我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

你可以把这个问题表示成整数规划问题。(这只是解决这个问题的一种可能的方法)

有分:

a b c d
e f g h
i j k l
m n o p

我们可以写出16个方程其中以点f为例

f <= ai + bi + ci + ei + fi + gi + ii + ji + ki   

最小化所有索引的总和和整数解。

解当然是这些指标的和。

这可以通过将所有xi设置为边界0来进一步简化,因此在本例中最终得到4+1方程。

问题是没有解决这类问题的简单算法。我不是这方面的专家,但解决这个问题作为线性规划是NP困难。

其他回答

这是部分答案,我试图找到一个下界和上界,可能是炸弹的数量。

在3x3和更小的板上,解决方案通常是编号最大的单元。

在大于4x4的板中,第一个明显的下界是角的和:

*2* 3  7 *1*
 1  5  6  2
 2  1  3  2
*6* 9  6 *4*

无论你如何安排炸弹,都不可能用少于2+1+6+4=13个炸弹来清除这个4x4板。

在其他回答中已经提到,将炸弹放置在第二个角落以消除角落并不比将炸弹放置在角落本身更糟糕,所以考虑到棋盘:

*2* 3  4  7 *1*
 1  5  2  6  2
 4  3  4  2  1
 2  1  2  4  1
 3  1  3  4  1
 2  1  4  3  2
*6* 9  1  6 *4*

我们可以通过在第二个角上放置炸弹来将角归零,从而得到一个新的板:

 0  1  1  6  0
 0  3  0  5  1
 2  1  1  1  0
 2  1  2  4  1
 0  0  0  0  0
 0  0  0  0  0
 0  3  0  2  0

到目前为止一切顺利。我们需要13枚炸弹才能清空角落。

现在观察下面标记的数字6、4、3和2:

 0  1  1 *6* 0
 0  3  0  5  1
 2  1  1  1  0
*2* 1  2 *4* 1
 0  0  0  0  0
 0  0  0  0  0
 0 *3* 0  2  0

我们无法使用一枚炸弹去轰炸任何两个细胞,所以最小炸弹数量增加了6+4+3+2,所以再加上我们用来清除角落的炸弹数量,我们得到这张地图所需的最小炸弹数量变成了28枚炸弹。用少于28个炸弹是不可能清除这张地图的,这是这张地图的下限。

可以用贪心算法建立上界。其他答案表明,贪婪算法产生的解决方案使用28个炸弹。因为我们之前已经证明了没有一个最优解可以拥有少于28个炸弹,所以28个炸弹确实是一个最优解。

当贪心和我上面提到的寻找最小界的方法不收敛时,我猜你必须回去检查所有的组合。

求下界的算法如下:

选一个数值最大的元素,命名为P。 将所有距离P和P本身两步远的单元格标记为不可拾取。 将P添加到最小值列表中。 重复步骤1,直到所有单元格都不可拾取。 对最小值列表求和得到下界。

你可以把这个问题表示成整数规划问题。(这只是解决这个问题的一种可能的方法)

有分:

a b c d
e f g h
i j k l
m n o p

我们可以写出16个方程其中以点f为例

f <= ai + bi + ci + ei + fi + gi + ii + ji + ki   

最小化所有索引的总和和整数解。

解当然是这些指标的和。

这可以通过将所有xi设置为边界0来进一步简化,因此在本例中最终得到4+1方程。

问题是没有解决这类问题的简单算法。我不是这方面的专家,但解决这个问题作为线性规划是NP困难。

这可以用深度为O(3^(n))的树来求解。其中n是所有平方和。

首先考虑用O(9^n)树来解决问题是很简单的,只需考虑所有可能的爆炸位置。有关示例,请参阅Alfe的实现。

接下来我们意识到,我们可以从下往上轰炸,仍然得到一个最小的轰炸模式。

Start from the bottom left corner. Bomb it to oblivion with the only plays that make sense (up and to the right). Move one square to the right. While the target has a value greater than zero, consider each of the 2 plays that make sense (straight up or up and to the right), reduce the value of the target by one, and make a new branch for each possibility. Move another to the right. While the target has a value greater than zero, consider each of the 3 plays that make sense (up left, up, and up right), reduce the value of the target by one, and make a new branch for each possibility. Repeat steps 5 and 6 until the row is eliminated. Move up a row and repeat steps 1 to 7 until the puzzle is solved.

这个算法是正确的,因为

有必要在某一时刻完成每一行。 完成一行总是需要一个游戏,一个在上面,一个在下面,或者在这一行内。 选择在未清除的最低行之上的玩法总是比选择在该行之上或该行之下的玩法更好。

在实践中,这个算法通常会比它的理论最大值做得更好,因为它会定期轰炸邻居并减少搜索的大小。如果我们假设每次轰炸都会减少4个额外目标的价值,那么我们的算法将运行在O(3^(n/4))或大约O(1.3^n)。

Because this algorithm is still exponential, it would be wise to limit the depth of the search. We might limit the number of branches allowed to some number, X, and once we are this deep we force the algorithm to choose the best path it has identified so far (the one that has the minimum total board sum in one of its terminal leaves). Then our algorithm is guaranteed to run in O(3^X) time, but it is not guaranteed to get the correct answer. However, we can always increase X and test empirically if the trade off between increased computation and better answers is worthwhile.

评价函数,总和:

int f (int ** matrix, int width, int height, int x, int y)
{
    int m[3][3] = { 0 };

    m[1][1] = matrix[x][y];
    if (x > 0) m[0][1] = matrix[x-1][y];
    if (x < width-1) m[2][1] = matrix[x+1][y];

    if (y > 0)
    {
        m[1][0] = matrix[x][y-1];
        if (x > 0) m[0][0] = matrix[x-1][y-1];
        if (x < width-1) m[2][0] = matrix[x+1][y-1];
    }

    if (y < height-1)
    {
        m[1][2] = matrix[x][y+1];
        if (x > 0) m[0][2] = matrix[x-1][y+1];
        if (x < width-1) m[2][2] = matrix[x+1][y+1];
    }

    return m[0][0]+m[0][1]+m[0][2]+m[1][0]+m[1][1]+m[1][2]+m[2][0]+m[2][1]+m[2][2];
}

目标函数:

Point bestState (int ** matrix, int width, int height)
{
    Point p = new Point(0,0);
    int bestScore = 0;
    int b = 0;

    for (int i=0; i<width; i++)
        for (int j=0; j<height; j++)
        {
            b = f(matrix,width,height,i,j);

            if (b > bestScore)
            {
                bestScore = best;
                p = new Point(i,j);
            }
        }

    retunr p;
}

破坏功能:

void destroy (int ** matrix, int width, int height, Point p)
{
    int x = p.x;
    int y = p.y;

    if(matrix[x][y] > 0) matrix[x][y]--;
    if (x > 0) if(matrix[x-1][y] > 0) matrix[x-1][y]--;
    if (x < width-1) if(matrix[x+1][y] > 0) matrix[x+1][y]--;

    if (y > 0)
    {
        if(matrix[x][y-1] > 0) matrix[x][y-1]--;
        if (x > 0) if(matrix[x-1][y-1] > 0) matrix[x-1][y-1]--;
        if (x < width-1) if(matrix[x+1][y-1] > 0) matrix[x+1][y-1]--;
    }

    if (y < height-1)
    {
        if(matrix[x][y] > 0) matrix[x][y+1]--;
        if (x > 0) if(matrix[x-1][y+1] > 0) matrix[x-1][y+1]--;
        if (x < width-1) if(matrix[x+1][y+1] > 0) matrix[x+1][y+1]--;
    }
}

目标函数:

bool isGoal (int ** matrix, int width, int height)
{
    for (int i=0; i<width; i++)
        for (int j=0; j<height; j++)
            if (matrix[i][j] > 0)
                return false;
    return true;
}

线性最大化函数:

void solve (int ** matrix, int width, int height)
{
    while (!isGoal(matrix,width,height))
    {
        destroy(matrix,width,height, bestState(matrix,width,height));
    }
}

这不是最优的,但可以通过找到更好的评价函数来优化。

. .但是考虑到这个问题,我在想一个主要的问题是在0中间的某个点上得到废弃的数字,所以我要采取另一种方法。这是支配最小值为零,然后试图转义零,这导致一般的最小现有值(s)或这样

我也有28招。我使用了两个测试来确定最佳下一步:第一个是产生最小棋盘和的一步。其次,对于相等的和,产生最大密度的移动,定义为:

number-of-zeros / number-of-groups-of-zeros

我是哈斯克尔。“解决板”显示引擎的解决方案。你可以通过输入“main”来玩游戏,然后输入目标点,“best”作为推荐,或者“quit”退出。

输出: *主>解决板 [(4, 4),(3、6),(3),(2,2),(2,2),(4、6)(4、6),(2,6),(2),(4,2)(2,6),(3),(4,3)(2,6)(4,2)(4、6)(4、6),(3、6),(2,6)(2,6)(2、4)(2、4)(2,6),(6),(4,2)(4,2)(4,2)(4,2)]

import Data.List
import Data.List.Split
import Data.Ord
import Data.Function(on)

board = [2,3,4,7,1,
         1,5,2,6,2,
         4,3,4,2,1,
         2,1,2,4,1,
         3,1,3,4,1,
         2,1,4,3,2,
         6,9,1,6,4]

n = 5
m = 7

updateBoard board pt =
  let x = fst pt
      y = snd pt
      precedingLines = replicate ((y-2) * n) 0
      bomb = concat $ replicate (if y == 1
                                    then 2
                                    else min 3 (m+2-y)) (replicate (x-2) 0 
                                                         ++ (if x == 1 
                                                                then [1,1]
                                                                else replicate (min 3 (n+2-x)) 1)
                                                                ++ replicate (n-(x+1)) 0)
  in zipWith (\a b -> max 0 (a-b)) board (precedingLines ++ bomb ++ repeat 0)

showBoard board = 
  let top = "   " ++ (concat $ map (\x -> show x ++ ".") [1..n]) ++ "\n"
      chunks = chunksOf n board
  in putStrLn (top ++ showBoard' chunks "" 1)
       where showBoard' []     str count = str
             showBoard' (x:xs) str count =
               showBoard' xs (str ++ show count ++ "." ++ show x ++ "\n") (count+1)

instances _ [] = 0
instances x (y:ys)
  | x == y    = 1 + instances x ys
  | otherwise = instances x ys

density a = 
  let numZeros = instances 0 a
      groupsOfZeros = filter (\x -> head x == 0) (group a)
  in if null groupsOfZeros then 0 else numZeros / fromIntegral (length groupsOfZeros)

boardDensity board = sum (map density (chunksOf n board))

moves = [(a,b) | a <- [2..n-1], b <- [2..m-1]]               

bestMove board = 
  let lowestSumMoves = take 1 $ groupBy ((==) `on` snd) 
                              $ sortBy (comparing snd) (map (\x -> (x, sum $ updateBoard board x)) (moves))
  in if null lowestSumMoves
        then (0,0)
        else let lowestSumMoves' = map (\x -> fst x) (head lowestSumMoves) 
             in fst $ head $ reverse $ sortBy (comparing snd) 
                (map (\x -> (x, boardDensity $ updateBoard board x)) (lowestSumMoves'))   

solve board = solve' board [] where
  solve' board result
    | sum board == 0 = result
    | otherwise      = 
        let best = bestMove board 
        in solve' (updateBoard board best) (result ++ [best])

main :: IO ()
main = mainLoop board where
  mainLoop board = do 
    putStrLn ""
    showBoard board
    putStr "Pt: "
    a <- getLine
    case a of 
      "quit"    -> do putStrLn ""
                      return ()
      "best"    -> do putStrLn (show $ bestMove board)
                      mainLoop board
      otherwise -> let ws = splitOn "," a
                       pt = (read (head ws), read (last ws))
                   in do mainLoop (updateBoard board pt)