我更喜欢尽可能少的正式定义和简单的数学。
当前回答
仅仅是以快速而简单的方式表达一个算法的复杂性。 大 O 评分存在,以解释任何算法的最佳、最糟糕和平均案例时间复杂性。
否则,与这些功能工作是非常困难的,因为它们倾向于:
有太多的泡沫 - 像二进制搜索这样的算法通常运行得更快,因为序列分区工作得很好,因为 n = 2k − 1 的尺寸,因为序列分区工作得更快。 这个细节并不特别重要,但它警告我们,任何算法的准确时间复杂性功能可能非常复杂,如图2.2 所示,有很少的上下泡沫。
https://mimoza.marmara.edu.tr/~msakalli/cse706_12/SkienaTheAlgorithmDesignMan ual.pdf
其他回答
EDIT:快注,这几乎是令人困惑的Big O评分(这是一个上线)与Theta评分(这是一个上线和下线)。在我的经验中,这实际上是非学术设置讨论的典型。
在一个句子中:随着你的工作的规模上升,完成工作需要多长时间?
“大O”评分的一个重要方面是,它不会说哪个算法会更快到一个特定的尺寸。 采取一个字符串(字符串,整体值)对一系列对(字符串,整体值)。 是否更快地找到字符串中的关键或字符串中的元素,基于字符串? (即字符串, “找到字符串部分与特定的关键相匹配的第一个元素” ) 字符串是基因。
大 O 描述了一个功能的增长行为上限,例如一个程序的运行时间,当输入变得大。
例子:
O(n):如果我翻倍输入大小,运行时间将翻倍O(n2):如果输入大小将翻倍运行时间四倍O(log n):如果输入大小翻倍运行时间将增加一倍O(2n):如果输入大小增加一倍,运行时间将翻倍
输入尺寸通常是比特所需的空间来代表输入。
有几个很棒的答案已经发布,但我希望以不同的方式做出贡献. 如果你想看到发生的一切,你可以假设一个编辑器可以在 ~1sec 中完成近10^8操作. 如果输入在10^8中,你可能想设计一个算法,以线性方式运作(如一个不需要运行)。
此分類上一篇
如果我想向6岁的孩子解释这一点,我会开始绘制一些函数f(x) = x 和f(x) = x^2 例如,并问一个孩子哪个函数将是页面顶部的顶部函数。
大 O 评级是描述算法将运行多快的方式,因为有意数量的输入参数,我们将称之为“n”。在计算机科学中是有用的,因为不同的机器以不同的速度运行,简单地说算法需要 5 秒,不会告诉你很多,因为虽然你可能运行一个系统与 4.5 GHz 八核处理器,我可能运行一个系统。