我更喜欢尽可能少的正式定义和简单的数学。
当前回答
测量软件程序的速度非常困难,当我们尝试时,答案可以非常复杂,并且充满了例外和特殊案例,这是一个很大的问题,因为所有这些例外和特殊案例都令人沮丧和无助,当我们想比较两个不同的程序,以确定哪个是“最快”。
好事:
邪恶的:
和那可怕的:
其他回答
大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”
因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。
我的名单
比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!
為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2
我希望这就像你想要的那样简单。
告诉你从亚马逊订购哈利·波特:完整的8电影收藏(Blu-ray)并同时在线下载相同的电影收藏。你想测试哪种方法更快。
从实验中,我们知道在线购物的规模比在线下载更好,很重要的是要了解大O评级,因为它有助于分析算法的规模性和效率。
注意: 大 O 评级是算法最糟糕的场景,假设 O(1) 和 O(n) 是上面的例子最糟糕的场景。
参考: http://carlcheo.com/compsci
假设我们正在谈论一个算法A,该算法应该做一些与数据集的尺寸n。
然后 O( <某些表达式 X 涉及 n> ) 意思,在简单的英语:
如果您在执行 A 时不幸,可能需要尽可能多的 X(n) 操作完成。
正如发生的那样,有某些功能(想想它们作为X(n))的实施,这些功能往往很常见,这些功能是众所周知的,易于比较的(例子:1、Log N、N、N^2、N!等)。
比较这些,当谈到A和其他算法时,很容易根据他们可能需要完成的操作数量排序算法。
总的来说,我们的目标将是找到或结构一个算法A,以便它有一个函数X(n)返回尽可能低的数字。
大 O 评分最常被编程者用作计算(算法)将需要多长时间完成的约定测量,表达为输入组的尺寸的函数。
在许多情况下,一个算法的“O”将落入下列情况之一:
O(1) - 完成时间是相同的,无论输入组的尺寸. 一个例子是通过指数访问一个序列元素. O(Log N) - 完成时间增加大约与 log2(n)相匹配。 例如, 1024 个元素需要大约两倍的长度为 32 个元素,因为 Log2(1024) = 10 和 Log2(32) = 5. 一个例子是找到一个元素在二进制搜索树(BST)。
大 O 忽略了没有有意义的因素,因为输入尺寸向无限增加,而函数的增长曲线,这意味着由函数添加或加倍的恒数只是被忽略。
“什么是明确的英语解释大O?尽可能少的正式定义和简单的数学。
这样一个美丽简单而短暂的问题似乎至少值得一个同样短暂的答案,就像一个学生在教学期间可以得到的那样。
大 O 评级简单地说明一个算法可以运行多长时间,仅仅是输入数据的数量。
(在一个美妙的,无单位的时间感中!)(这就是重要,因为人们总是想要更多,无论他们生活在今天还是明天)
好吧,什么是那么奇妙的关于大O评级,如果这就是它做什么?
实际上,Big O分析是如此有用和重要,因为Big O把重点放在算法本身的复杂性上,完全忽略了一切只是比例性恒定的东西 - 如JavaScript引擎,CPU的速度,您的互联网连接,以及所有快速变成像模型T一样可笑的过时的东西。