我更喜欢尽可能少的正式定义和简单的数学。
当前回答
最简单的定义我可以给大 Oh 评分是:
智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。
因此,要找到一个名字给了电话号码(逆转搜索):
最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。
旅行卖家
听起来很简单吗?再想一想。
聚合物时间
另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。
其他回答
如果我想向6岁的孩子解释这一点,我会开始绘制一些函数f(x) = x 和f(x) = x^2 例如,并问一个孩子哪个函数将是页面顶部的顶部函数。
这是一个非常简单的解释,但我希望它涵盖了最重要的细节。
让我们说你的算法处理问题取决于某些“因素”,例如,让我们做它N和X。
根据 N 和 X,您的算法将需要一些操作,例如在 WORST 案例中,它是 3(N^2) + log(X) 操作。
由于Big-O不太关心恒定的因素(aka 3),你的算法的Big-O是O(N^2 + log(X))。它基本上翻译“你的算法需要最糟糕的案例规模的操作数量”。
这里来了大O,告诉我们这个数学是多么艰难。
现在他们要求我添加一个到十个!为什么我会这样做?我不想添加一个到六个?添加一个到十个......好......这会更难!
对于大 n 而言, n 平方比 n 更大。
一个:我选择一张卡在我们现在工作的地板部分,你可以为我选择一个,如果你愿意(第一次我们这样做,“我们现在工作的地板部分”是整个地板,当然。
大 O 告诉我们:这个类型需要 O(n log n) 工作完成,在中间情况下。
现在你知道我的朋友,大O,他帮助我们做不到工作,如果你知道大O,你也可以做不到工作!
你和我一起学到了这一切!你太聪明了!谢谢你!
现在这个工作已经完成了,让我们玩吧!
算法例(Java):
public boolean search(/* for */Integer K,/* in */List</* of */Integer> L)
{
for(/* each */Integer i:/* in */L)
{
if(i == K)
{
return true;
}
}
return false;
}
算法描述:
这个算法搜索一个列表,项目按项目,寻找一个密钥,在列表中的每个项目,如果它是密钥,然后返回真实,如果循环没有找到密钥,返回虚假。
Big-O 评分代表了复杂性(时间、空间等)的顶端。
要找到 The Big-O on Time Complexity:
计算时间(考虑到输入大小)最糟糕的案例需要: 最糟糕的案例: 关键不在列表中 时间(Worst-Case) = 4n+1 时间: O(4n+1) = O(n) <unk>在大O,恒例被忽视 O(n) ~ 线性
还有大欧米加,它代表了最佳案例的复杂性:
最佳案例:关键是第一个项目 时间(最佳案例) = 4 时间: Ω(4) = O(1) ~ Instant\Constant
TLDR:Big O在数学术语中解释算法的性能。
较慢的算法倾向于在 n 运行到 x 或多个,取决于它的深度,而更快的,如二进制搜索运行在 O(log n),这使得它运行更快,因为数据集变得更大。
可以从算法中最复杂的线路计算大O看。
有了小型或未分类的数据集,Big O 可能令人惊讶,因为 n log n 复杂性算法如二进制搜索可以缓慢较小的或未分类的集,为一个简单的运行例子线性搜索与二进制搜索,请参见我的JavaScript例子:
https://codepen.io/serdarsenay/pen/XELWqN?editors=1011(下面的算法)
function lineerSearch() {
init();
var t = timer('lineerSearch benchmark');
var input = this.event.target.value;
for(var i = 0;i<unsortedhaystack.length - 1;i++) {
if (unsortedhaystack[i] === input) {
document.getElementById('result').innerHTML = 'result is... "' + unsortedhaystack[i] + '", on index: ' + i + ' of the unsorted array. Found' + ' within ' + i + ' iterations';
console.log(document.getElementById('result').innerHTML);
t.stop();
return unsortedhaystack[i];
}
}
}
function binarySearch () {
init();
sortHaystack();
var t = timer('binarySearch benchmark');
var firstIndex = 0;
var lastIndex = haystack.length-1;
var input = this.event.target.value;
//currently point in the half of the array
var currentIndex = (haystack.length-1)/2 | 0;
var iterations = 0;
while (firstIndex <= lastIndex) {
currentIndex = (firstIndex + lastIndex)/2 | 0;
iterations++;
if (haystack[currentIndex] < input) {
firstIndex = currentIndex + 1;
//console.log(currentIndex + " added, fI:"+firstIndex+", lI: "+lastIndex);
} else if (haystack[currentIndex] > input) {
lastIndex = currentIndex - 1;
//console.log(currentIndex + " substracted, fI:"+firstIndex+", lI: "+lastIndex);
} else {
document.getElementById('result').innerHTML = 'result is... "' + haystack[currentIndex] + '", on index: ' + currentIndex + ' of the sorted array. Found' + ' within ' + iterations + ' iterations';
console.log(document.getElementById('result').innerHTML);
t.stop();
return true;
}
}
}