我更喜欢尽可能少的正式定义和简单的数学。


当前回答

上述说法是一个很好的开始,但不是完全真实的。

更准确的解释(数学)

n = 输入参数数

T(n) = 表达算法运行时间的实际函数为 n 的函数

c = 常态

f(n)= 表达算法运行时间为 n 的函数的约定函数

接下来,在大O方面,接近f(n)被认为足够好,只要下面的条件是真实的。

lim     T(n) ≤ c×f(n)
n→∞

方程式是如 n 接近无限, T 的 n 是少于或等于 c 次 f 的 n。

T(n)∈O(n)

回到英语

基于上面的数学定义,如果你说你的算法是一个大O的n,这意味着它是一个函数的n(输入参数的数量)或更快。

Big O of n 意味着我的算法运行至少如此之快. 你不能看你的算法的 Big O 评分,并说它很慢. 你只能说它很快。

其他回答

算法例(Java):

public boolean search(/* for */Integer K,/* in */List</* of */Integer> L)
{
    for(/* each */Integer i:/* in */L)
    {
        if(i == K)
        {
            return true;
        }
    }
    
    return false;
}

算法描述:

这个算法搜索一个列表,项目按项目,寻找一个密钥,在列表中的每个项目,如果它是密钥,然后返回真实,如果循环没有找到密钥,返回虚假。

Big-O 评分代表了复杂性(时间、空间等)的顶端。

要找到 The Big-O on Time Complexity:

计算时间(考虑到输入大小)最糟糕的案例需要: 最糟糕的案例: 关键不在列表中 时间(Worst-Case) = 4n+1 时间: O(4n+1) = O(n) <unk>在大O,恒例被忽视 O(n) ~ 线性

还有大欧米加,它代表了最佳案例的复杂性:

最佳案例:关键是第一个项目 时间(最佳案例) = 4 时间: Ω(4) = O(1) ~ Instant\Constant


最简单的定义我可以给大 Oh 评分是:

智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。

因此,要找到一个名字给了电话号码(逆转搜索):

最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。

旅行卖家

听起来很简单吗?再想一想。

聚合物时间

另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。

Big-O 是由程序所消耗的资源增加率,即问题例大小。

资源:可能是CPU时间,可能是最大 RAM 空间。

说问题是“找到金额”,

int Sum(int*arr,int size){
      int sum=0;
      while(size-->0) 
         sum+=arr[size]; 

      return sum;
}

problem-instance= {5,10,15} ==> problem-instance-size = 3, iterations-in-loop= 3

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5 iterations-in-loop = 5

说问题是“找到组合”,

    void Combination(int*arr,int size)
    { int outer=size,inner=size;
      while(outer -->0) {
        inner=size;
        while(inner -->0)
          cout<<arr[outer]<<"-"<<arr[inner]<<endl;
      }
    }

problem-instance= {5,10,15} ==> problem-instance-size = 3, total-iterations = 3*3 = 9

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5, total-iterations= 5*5 = 25

对于“n”尺寸的输入,该程序以序列中的“n*n”节点的速度生长,因此,Big-O是N2以O(n2)表达。

这是一个非常简单的解释,但我希望它涵盖了最重要的细节。

让我们说你的算法处理问题取决于某些“因素”,例如,让我们做它N和X。

根据 N 和 X,您的算法将需要一些操作,例如在 WORST 案例中,它是 3(N^2) + log(X) 操作。

由于Big-O不太关心恒定的因素(aka 3),你的算法的Big-O是O(N^2 + log(X))。它基本上翻译“你的算法需要最糟糕的案例规模的操作数量”。

大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。

如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。

如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。

等等等。