我更喜欢尽可能少的正式定义和简单的数学。
当前回答
当我们有一个函数,如f(n) = n+3 和我们想知道图表看起来如何喜欢,当n接近无限时,我们只是放下所有的连续和较低的顺序术语,因为它们不在乎什么时候n变得大。
常规和较低的命令时间的简单落下,正是找到下方和上方的功能的过程。
根据定义,一个函数是另一个函数的下层或上层界限,如果您可以找到一个恒定的函数,以便为每个 n 的输出比原始函数更大(或较小)。
f(n) = n*C > f(n) = n+3
而且是的 C = 2 会这样做,因此我们的函数 f(n) = n 可以是我们函数 f(x) = x + 3 的顶部界限。
相同的下限:
f(n) = n*C < f(n) = n+3
C = 2 會這樣做
其他回答
我不确定我正在进一步贡献这个主题,但我仍然认为我会分享:我曾经发现这个博客帖子有几个非常有用的(也许非常基本的)解释和例子关于Big O:
通过例子,这有助于在我的<unk>子像<unk>子一样的喉<unk>中获得细微的基本,所以我认为这是一个相当下载10分钟的阅读,让你走在正确的方向。
大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。
如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。
如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。
等等等。
有几个很棒的答案已经发布,但我希望以不同的方式做出贡献. 如果你想看到发生的一切,你可以假设一个编辑器可以在 ~1sec 中完成近10^8操作. 如果输入在10^8中,你可能想设计一个算法,以线性方式运作(如一个不需要运行)。
此分類上一篇
1(一) :
这种复杂性与O(1)相同,除非它只是稍微糟糕一点,对于所有实用目的,你可以把它视为一个非常大的连续规模。
和(n):
O(n log n):
O(n2):
它作为一个平方,在那里 n 是平方侧的长度. 这是与“网络效应”相同的增长率,在那里网络中的每个人都可以知道网络中的每个人. 增长是昂贵的. 大多数可扩展的解决方案不能使用这个复杂度的算法,而不做显著的体操。
二(二) :
大 O 评级是描述算法将运行多快的方式,因为有意数量的输入参数,我们将称之为“n”。在计算机科学中是有用的,因为不同的机器以不同的速度运行,简单地说算法需要 5 秒,不会告诉你很多,因为虽然你可能运行一个系统与 4.5 GHz 八核处理器,我可能运行一个系统。