我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

上面的函数在垂直线上不起作用。这是一个工作正常的函数! 与点p1 p2相交。CheckPoint为p;

public float DistanceOfPointToLine2(PointF p1, PointF p2, PointF p)
{
  //          (y1-y2)x + (x2-x1)y + (x1y2-x2y1)
  //d(P,L) = --------------------------------
  //         sqrt( (x2-x1)pow2 + (y2-y1)pow2 )

  double ch = (p1.Y - p2.Y) * p.X + (p2.X - p1.X) * p.Y + (p1.X * p2.Y - p2.X * p1.Y);
  double del = Math.Sqrt(Math.Pow(p2.X - p1.X, 2) + Math.Pow(p2.Y - p1.Y, 2));
  double d = ch / del;
  return (float)d;
}

其他回答

我制作了一个交互式Desmos图来演示如何实现这一点:

https://www.desmos.com/calculator/kswrm8ddum

红点是A点,绿点是B点,C点是蓝色点。 您可以拖动图形中的点来查看值的变化。 左边的值“s”是线段的参数(即s = 0表示点A, s = 1表示点B)。 值“d”是第三点到经过A和B的直线的距离。

编辑:

有趣的小见解:坐标(s, d)是坐标系中第三点C的坐标,AB是单位x轴,单位y轴垂直于AB。

在我自己的问题线程如何计算在C, c# / .NET 2.0或Java的所有情况下一个点和线段之间的最短2D距离?当我找到一个c#的答案时,我被要求把它放在这里:所以它是从http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static修改的:

//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] BC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    BC[0] = pointC[0] - pointB[0];
    BC[1] = pointC[1] - pointB[1];
    double dot = AB[0] * BC[0] + AB[1] * BC[1];

    return dot;
}

//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] AC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    AC[0] = pointC[0] - pointA[0];
    AC[1] = pointC[1] - pointA[1];
    double cross = AB[0] * AC[1] - AB[1] * AC[0];

    return cross;
}

//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
    double d1 = pointA[0] - pointB[0];
    double d2 = pointA[1] - pointB[1];

    return Math.Sqrt(d1 * d1 + d2 * d2);
}

//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC, 
    bool isSegment)
{
    double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
    if (isSegment)
    {
        double dot1 = DotProduct(pointA, pointB, pointC);
        if (dot1 > 0) 
            return Distance(pointB, pointC);

        double dot2 = DotProduct(pointB, pointA, pointC);
        if (dot2 > 0) 
            return Distance(pointA, pointC);
    }
    return Math.Abs(dist);
} 

我不是要回答问题,而是要问问题,所以我希望我不会因为某些原因而得到数百万张反对票,而是批评。我只是想(并被鼓励)分享其他人的想法,因为这个帖子中的解决方案要么是用一些奇异的语言(Fortran, Mathematica),要么被某人标记为错误。对我来说唯一有用的(由Grumdrig编写)是用c++编写的,没有人标记它有错误。但是它缺少被调用的方法(dot等)。

c#版本

public static FP DistanceToLineSegment(FPVector3 a, FPVector3 b, FPVector3 point)
{
  var d = b - a;
  var s = d.SqrMagnitude;
  var ds = d / s;
  var lambda = FPVector3.Dot(point - a, ds);
  var p = FPMath.Clamp01(lambda) * d;
  return (a + p - point).Magnitude;
}

在数学

它使用线段的参数描述,并将点投影到线段定义的直线中。当参数在线段内从0到1时,如果投影在这个范围之外,我们计算到相应端点的距离,而不是法线到线段的直线。

Clear["Global`*"];
 distance[{start_, end_}, pt_] := 
   Module[{param},
   param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
                                                       here means vector product*)

   Which[
    param < 0, EuclideanDistance[start, pt],                 (*If outside bounds*)
    param > 1, EuclideanDistance[end, pt],
    True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
    ]
   ];  

策划的结果:

Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]

画出比截断距离更近的点:

等高线图:

在javascript中使用几何:

var a = { x:20, y:20};//start segment    
var b = { x:40, y:30};//end segment   
var c = { x:37, y:14};//point   

// magnitude from a to c    
var ac = Math.sqrt( Math.pow( ( a.x - c.x ), 2 ) + Math.pow( ( a.y - c.y ), 2) );    
// magnitude from b to c   
var bc = Math.sqrt( Math.pow( ( b.x - c.x ), 2 ) + Math.pow( ( b.y - c.y ), 2 ) );    
// magnitude from a to b (base)     
var ab = Math.sqrt( Math.pow( ( a.x - b.x ), 2 ) + Math.pow( ( a.y - b.y ), 2 ) );    
 // perimeter of triangle     
var p = ac + bc + ab;    
 // area of the triangle    
var area = Math.sqrt( p/2 * ( p/2 - ac) * ( p/2 - bc ) * ( p/2 - ab ) );    
 // height of the triangle = distance    
var h = ( area * 2 ) / ab;    
console.log ("height: " + h);