我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
JavaScript中一个基于这个公式的更简洁的解决方案:
distToSegment: function (point, linePointA, linePointB){
var x0 = point.X;
var y0 = point.Y;
var x1 = linePointA.X;
var y1 = linePointA.Y;
var x2 = linePointB.X;
var y2 = linePointB.Y;
var Dx = (x2 - x1);
var Dy = (y2 - y1);
var numerator = Math.abs(Dy*x0 - Dx*y0 - x1*y2 + x2*y1);
var denominator = Math.sqrt(Dx*Dx + Dy*Dy);
if (denominator == 0) {
return this.dist2(point, linePointA);
}
return numerator/denominator;
}
其他回答
省道和颤振的解决方法:
import 'dart:math' as math;
class Utils {
static double shortestDistance(Point p1, Point p2, Point p3){
double px = p2.x - p1.x;
double py = p2.y - p1.y;
double temp = (px*px) + (py*py);
double u = ((p3.x - p1.x)*px + (p3.y - p1.y)* py) /temp;
if(u>1){
u=1;
}
else if(u<0){
u=0;
}
double x = p1.x + u*px;
double y = p1.y + u*py;
double dx = x - p3.x;
double dy = y - p3.y;
double dist = math.sqrt(dx*dx+dy*dy);
return dist;
}
}
class Point {
double x;
double y;
Point(this.x, this.y);
}
在数学
它使用线段的参数描述,并将点投影到线段定义的直线中。当参数在线段内从0到1时,如果投影在这个范围之外,我们计算到相应端点的距离,而不是法线到线段的直线。
Clear["Global`*"];
distance[{start_, end_}, pt_] :=
Module[{param},
param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
here means vector product*)
Which[
param < 0, EuclideanDistance[start, pt], (*If outside bounds*)
param > 1, EuclideanDistance[end, pt],
True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
]
];
策划的结果:
Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]
画出比截断距离更近的点:
等高线图:
嘿,我昨天才写的。它在Actionscript 3.0中,基本上是Javascript,尽管你可能没有相同的Point类。
//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
var nearestPt:Point; //closest point on seqment to pt
var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
var bLenSq:Number = dot( b, b ); //Segment length squared
if( keyDot <= 0 ) //pt is "behind" st, use st
{
nearestPt = st
}
else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
{
nearestPt = st.add(b);
}
else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
{
var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
nearestPt = st.add(partOfB);
}
var dist:Number = (pt.subtract(nearestPt)).length;
return dist;
}
此外,这里有一个关于这个问题的相当完整和可读的讨论:notejot.com
如果它是一条无限大的直线,而不是一条线段,最简单的方法是这样(在ruby中),其中mx + b是直线,(x1, y1)是已知的点
(y1 - mx1 - b).abs / Math.sqrt(m**2 + 1)
JavaScript中一个基于这个公式的更简洁的解决方案:
distToSegment: function (point, linePointA, linePointB){
var x0 = point.X;
var y0 = point.Y;
var x1 = linePointA.X;
var y1 = linePointA.Y;
var x2 = linePointB.X;
var y2 = linePointB.Y;
var Dx = (x2 - x1);
var Dy = (y2 - y1);
var numerator = Math.abs(Dy*x0 - Dx*y0 - x1*y2 + x2*y1);
var denominator = Math.sqrt(Dx*Dx + Dy*Dy);
if (denominator == 0) {
return this.dist2(point, linePointA);
}
return numerator/denominator;
}