我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

这里它使用Swift

    /* Distance from a point (p1) to line l1 l2 */
func distanceFromPoint(p: CGPoint, toLineSegment l1: CGPoint, and l2: CGPoint) -> CGFloat {
    let A = p.x - l1.x
    let B = p.y - l1.y
    let C = l2.x - l1.x
    let D = l2.y - l1.y

    let dot = A * C + B * D
    let len_sq = C * C + D * D
    let param = dot / len_sq

    var xx, yy: CGFloat

    if param < 0 || (l1.x == l2.x && l1.y == l2.y) {
        xx = l1.x
        yy = l1.y
    } else if param > 1 {
        xx = l2.x
        yy = l2.y
    } else {
        xx = l1.x + param * C
        yy = l1.y + param * D
    }

    let dx = p.x - xx
    let dy = p.y - yy

    return sqrt(dx * dx + dy * dy)
}

其他回答

忍不住用python来编码:)

from math import sqrt, fabs
def pdis(a, b, c):
    t = b[0]-a[0], b[1]-a[1]           # Vector ab
    dd = sqrt(t[0]**2+t[1]**2)         # Length of ab
    t = t[0]/dd, t[1]/dd               # unit vector of ab
    n = -t[1], t[0]                    # normal unit vector to ab
    ac = c[0]-a[0], c[1]-a[1]          # vector ac
    return fabs(ac[0]*n[0]+ac[1]*n[1]) # Projection of ac to n (the minimum distance)

print pdis((1,1), (2,2), (2,0))        # Example (answer is 1.414)

fortran也是一样:)

real function pdis(a, b, c)
    real, dimension(0:1), intent(in) :: a, b, c
    real, dimension(0:1) :: t, n, ac
    real :: dd
    t = b - a                          ! Vector ab
    dd = sqrt(t(0)**2+t(1)**2)         ! Length of ab
    t = t/dd                           ! unit vector of ab
    n = (/-t(1), t(0)/)                ! normal unit vector to ab
    ac = c - a                         ! vector ac
    pdis = abs(ac(0)*n(0)+ac(1)*n(1))  ! Projection of ac to n (the minimum distance)
end function pdis


program test
    print *, pdis((/1.0,1.0/), (/2.0,2.0/), (/2.0,0.0/))   ! Example (answer is 1.414)
end program test

在f#中,点c到a和b之间的线段的距离为:

let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
  let d = b - a
  let s = d.Length
  let lambda = (c - a) * d / s
  let p = (lambda |> max 0.0 |> min s) * d / s
  (a + p - c).Length

向量d沿着线段从a指向b。d/s与c-a的点积给出了无限直线与点c之间最接近点的参数。使用min和max函数将该参数钳制到范围0..s,使该点位于a和b之间。最后,a+p-c的长度是c到线段上最近点的距离。

使用示例:

pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))

这里是与c++答案相同的东西,但移植到pascal。点参数的顺序已经改变,以适应我的代码,但还是一样的东西。

function Dot(const p1, p2: PointF): double;
begin
  Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
  result.x := p1.x - p2.x;
  result.y := p1.y - p2.y;
end;

function ShortestDistance2(const p,v,w : PointF) : double;
var
  l2,t : double;
  projection,tt: PointF;
begin
  // Return minimum distance between line segment vw and point p
  //l2 := length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  l2 := Distance(v,w);
  l2 := MPower(l2,2);
  if (l2 = 0.0) then begin
    result:= Distance(p, v);   // v == w case
    exit;
  end;
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line.
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
  if (t < 0.0) then begin
    result := Distance(p, v);       // Beyond the 'v' end of the segment
    exit;
  end
  else if (t > 1.0) then begin
    result := Distance(p, w);  // Beyond the 'w' end of the segment
    exit;
  end;
  //projection := v + t * (w - v);  // Projection falls on the segment
  tt.x := v.x + t * (w.x - v.x);
  tt.y := v.y + t * (w.y - v.y);
  result := Distance(p, tt);
end;

用t-sql编码

点为(@px, @py),线段从(@ax, @ay)到(@bx, @by)

create function fn_sqr (@NumberToSquare decimal(18,10)) 
returns decimal(18,10)
as 
begin
    declare @Result decimal(18,10)
    set @Result = @NumberToSquare * @NumberToSquare
    return @Result
end
go

create function fn_Distance(@ax decimal (18,10) , @ay decimal (18,10), @bx decimal(18,10),  @by decimal(18,10)) 
returns decimal(18,10)
as
begin
    declare @Result decimal(18,10)
    set @Result = (select dbo.fn_sqr(@ax - @bx) + dbo.fn_sqr(@ay - @by) )
    return @Result
end
go

create function fn_DistanceToSegmentSquared(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10)) 
returns decimal(18,10)
as 
begin
    declare @l2 decimal(18,10)
    set @l2 = (select dbo.fn_Distance(@ax, @ay, @bx, @by))
    if @l2 = 0
        return dbo.fn_Distance(@px, @py, @ax, @ay)
    declare @t decimal(18,10)
    set @t = ((@px - @ax) * (@bx - @ax) + (@py - @ay) * (@by - @ay)) / @l2
    if (@t < 0) 
        return dbo.fn_Distance(@px, @py, @ax, @ay);
    if (@t > 1) 
        return dbo.fn_Distance(@px, @py, @bx, @by);
    return dbo.fn_Distance(@px, @py,  @ax + @t * (@bx - @ax),  @ay + @t * (@by - @ay))
end
go

create function fn_DistanceToSegment(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10)) 
returns decimal(18,10)
as 
begin
    return sqrt(dbo.fn_DistanceToSegmentSquared(@px, @py , @ax , @ay , @bx , @by ))
end
go

--example execution for distance from a point at (6,1) to line segment that runs from (4,2) to (2,1)
select dbo.fn_DistanceToSegment(6, 1, 4, 2, 2, 1) 
--result = 2.2360679775

--example execution for distance from a point at (-3,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(-3, -2, 0, -2, -2, 1) 
--result = 2.4961508830

--example execution for distance from a point at (0,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(0,-2, 0, -2, -2, 1) 
--result = 0.0000000000

对于懒人来说,以下是我在Objective-C语言中移植@Grumdrig的解决方案:

CGFloat sqr(CGFloat x) { return x*x; }
CGFloat dist2(CGPoint v, CGPoint w) { return sqr(v.x - w.x) + sqr(v.y - w.y); }
CGFloat distanceToSegmentSquared(CGPoint p, CGPoint v, CGPoint w)
{
    CGFloat l2 = dist2(v, w);
    if (l2 == 0.0f) return dist2(p, v);

    CGFloat t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    if (t < 0.0f) return dist2(p, v);
    if (t > 1.0f) return dist2(p, w);
    return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)));
}
CGFloat distanceToSegment(CGPoint point, CGPoint segmentPointV, CGPoint segmentPointW)
{
    return sqrtf(distanceToSegmentSquared(point, segmentPointV, segmentPointW));
}