我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。

如何清楚地显示为多线程划分的任务?


当前回答

我想提供一个简单的例子,以及我在自己解决这个问题时发现有用的解释。

在这个答案中,您将找到一些关于Python的GIL(全局解释器锁)的信息,以及一个使用multiprocessing.dummy编写的简单日常示例,以及一些简单的基准测试。

全局解释器锁(GIL)

Python不允许真正意义上的多线程。它有一个多线程包,但是如果你想多线程来加快你的代码,那么使用它通常不是一个好主意。

Python有一个称为全局解释器锁(GIL)的构造。GIL确保在任何时候只能执行一个“线程”。一个线程获取GIL,做一些工作,然后将GIL传递给下一个线程。

这种情况发生得很快,因此在人眼看来,您的线程似乎是并行执行的,但它们实际上只是轮流使用相同的CPU内核。

所有这些GIL传递都增加了执行开销。这意味着如果你想让你的代码运行得更快,那么使用线程打包通常不是个好主意。

使用Python的线程包是有原因的。如果你想同时运行一些事情,而效率不是一个问题,那就很好,也很方便。或者,如果您运行的代码需要等待一些东西(比如一些I/O),那么这可能很有意义。但是线程库不允许您使用额外的CPU内核。

多线程可以外包给操作系统(通过执行多线程处理),以及一些调用Python代码的外部应用程序(例如,Spark或Hadoop),或者Python代码调用的一些代码(例如:您可以让Python代码调用一个C函数来完成昂贵的多线程任务)。

为什么这很重要

因为很多人在了解GIL是什么之前,会花很多时间在他们的Python多线程代码中寻找瓶颈。

一旦这些信息清楚,下面是我的代码:

#!/bin/python
from multiprocessing.dummy import Pool
from subprocess import PIPE,Popen
import time
import os

# In the variable pool_size we define the "parallelness".
# For CPU-bound tasks, it doesn't make sense to create more Pool processes
# than you have cores to run them on.
#
# On the other hand, if you are using I/O-bound tasks, it may make sense
# to create a quite a few more Pool processes than cores, since the processes
# will probably spend most their time blocked (waiting for I/O to complete).
pool_size = 8

def do_ping(ip):
    if os.name == 'nt':
        print ("Using Windows Ping to " + ip)
        proc = Popen(['ping', ip], stdout=PIPE)
        return proc.communicate()[0]
    else:
        print ("Using Linux / Unix Ping to " + ip)
        proc = Popen(['ping', ip, '-c', '4'], stdout=PIPE)
        return proc.communicate()[0]


os.system('cls' if os.name=='nt' else 'clear')
print ("Running using threads\n")
start_time = time.time()
pool = Pool(pool_size)
website_names = ["www.google.com","www.facebook.com","www.pinterest.com","www.microsoft.com"]
result = {}
for website_name in website_names:
    result[website_name] = pool.apply_async(do_ping, args=(website_name,))
pool.close()
pool.join()
print ("\n--- Execution took {} seconds ---".format((time.time() - start_time)))

# Now we do the same without threading, just to compare time
print ("\nRunning NOT using threads\n")
start_time = time.time()
for website_name in website_names:
    do_ping(website_name)
print ("\n--- Execution took {} seconds ---".format((time.time() - start_time)))

# Here's one way to print the final output from the threads
output = {}
for key, value in result.items():
    output[key] = value.get()
print ("\nOutput aggregated in a Dictionary:")
print (output)
print ("\n")

print ("\nPretty printed output: ")
for key, value in output.items():
    print (key + "\n")
    print (value)

其他回答

Alex Martelli的回答对我有所帮助。不过,这里有一个我认为更有用的修改版本(至少对我来说)。

更新:可在Python 2和Python 3中使用

try:
    # For Python 3
    import queue
    from urllib.request import urlopen
except:
    # For Python 2 
    import Queue as queue
    from urllib2 import urlopen

import threading

worker_data = ['http://google.com', 'http://yahoo.com', 'http://bing.com']

# Load up a queue with your data. This will handle locking
q = queue.Queue()
for url in worker_data:
    q.put(url)

# Define a worker function
def worker(url_queue):
    queue_full = True
    while queue_full:
        try:
            # Get your data off the queue, and do some work
            url = url_queue.get(False)
            data = urlopen(url).read()
            print(len(data))

        except queue.Empty:
            queue_full = False

# Create as many threads as you want
thread_count = 5
for i in range(thread_count):
    t = threading.Thread(target=worker, args = (q,))
    t.start()

使用线程/多处理的最简单方法是使用更多高级库,如autothread。

import autothread
from time import sleep as heavyworkload

@autothread.multithreaded() # <-- This is all you need to add
def example(x: int, y: int):
    heavyworkload(1)
    return x*y

现在,您可以为函数提供int列表。Autothread将为您处理所有事务,并只提供并行计算的结果。

result = example([1, 2, 3, 4, 5], 10)

使用全新的concurrent.futures模块

def sqr(val):
    import time
    time.sleep(0.1)
    return val * val

def process_result(result):
    print(result)

def process_these_asap(tasks):
    import concurrent.futures

    with concurrent.futures.ProcessPoolExecutor() as executor:
        futures = []
        for task in tasks:
            futures.append(executor.submit(sqr, task))

        for future in concurrent.futures.as_completed(futures):
            process_result(future.result())
        # Or instead of all this just do:
        # results = executor.map(sqr, tasks)
        # list(map(process_result, results))

def main():
    tasks = list(range(10))
    print('Processing {} tasks'.format(len(tasks)))
    process_these_asap(tasks)
    print('Done')
    return 0

if __name__ == '__main__':
    import sys
    sys.exit(main())

执行器方法对于所有以前接触过Java的人来说似乎都很熟悉。

还有一个附带说明:为了保持宇宙的正常,如果你不使用上下文,不要忘记关闭你的池/执行器(这是如此棒,它为你做了)

作为第二个anwser的python3版本:

import queue as Queue
import threading
import urllib.request

# Called by each thread
def get_url(q, url):
    q.put(urllib.request.urlopen(url).read())

theurls = ["http://google.com", "http://yahoo.com", "http://www.python.org","https://wiki.python.org/moin/"]

q = Queue.Queue()
def thread_func():
    for u in theurls:
        t = threading.Thread(target=get_url, args = (q,u))
        t.daemon = True
        t.start()

    s = q.get()
    
def non_thread_func():
    for u in theurls:
        get_url(q,u)
        

    s = q.get()
   

您可以测试它:

start = time.time()
thread_func()
end = time.time()
print(end - start)

start = time.time()
non_thread_func()
end = time.time()
print(end - start)

non_thread_func()花费的时间应该是thread_func()的4倍

我想提供一个简单的例子,以及我在自己解决这个问题时发现有用的解释。

在这个答案中,您将找到一些关于Python的GIL(全局解释器锁)的信息,以及一个使用multiprocessing.dummy编写的简单日常示例,以及一些简单的基准测试。

全局解释器锁(GIL)

Python不允许真正意义上的多线程。它有一个多线程包,但是如果你想多线程来加快你的代码,那么使用它通常不是一个好主意。

Python有一个称为全局解释器锁(GIL)的构造。GIL确保在任何时候只能执行一个“线程”。一个线程获取GIL,做一些工作,然后将GIL传递给下一个线程。

这种情况发生得很快,因此在人眼看来,您的线程似乎是并行执行的,但它们实际上只是轮流使用相同的CPU内核。

所有这些GIL传递都增加了执行开销。这意味着如果你想让你的代码运行得更快,那么使用线程打包通常不是个好主意。

使用Python的线程包是有原因的。如果你想同时运行一些事情,而效率不是一个问题,那就很好,也很方便。或者,如果您运行的代码需要等待一些东西(比如一些I/O),那么这可能很有意义。但是线程库不允许您使用额外的CPU内核。

多线程可以外包给操作系统(通过执行多线程处理),以及一些调用Python代码的外部应用程序(例如,Spark或Hadoop),或者Python代码调用的一些代码(例如:您可以让Python代码调用一个C函数来完成昂贵的多线程任务)。

为什么这很重要

因为很多人在了解GIL是什么之前,会花很多时间在他们的Python多线程代码中寻找瓶颈。

一旦这些信息清楚,下面是我的代码:

#!/bin/python
from multiprocessing.dummy import Pool
from subprocess import PIPE,Popen
import time
import os

# In the variable pool_size we define the "parallelness".
# For CPU-bound tasks, it doesn't make sense to create more Pool processes
# than you have cores to run them on.
#
# On the other hand, if you are using I/O-bound tasks, it may make sense
# to create a quite a few more Pool processes than cores, since the processes
# will probably spend most their time blocked (waiting for I/O to complete).
pool_size = 8

def do_ping(ip):
    if os.name == 'nt':
        print ("Using Windows Ping to " + ip)
        proc = Popen(['ping', ip], stdout=PIPE)
        return proc.communicate()[0]
    else:
        print ("Using Linux / Unix Ping to " + ip)
        proc = Popen(['ping', ip, '-c', '4'], stdout=PIPE)
        return proc.communicate()[0]


os.system('cls' if os.name=='nt' else 'clear')
print ("Running using threads\n")
start_time = time.time()
pool = Pool(pool_size)
website_names = ["www.google.com","www.facebook.com","www.pinterest.com","www.microsoft.com"]
result = {}
for website_name in website_names:
    result[website_name] = pool.apply_async(do_ping, args=(website_name,))
pool.close()
pool.join()
print ("\n--- Execution took {} seconds ---".format((time.time() - start_time)))

# Now we do the same without threading, just to compare time
print ("\nRunning NOT using threads\n")
start_time = time.time()
for website_name in website_names:
    do_ping(website_name)
print ("\n--- Execution took {} seconds ---".format((time.time() - start_time)))

# Here's one way to print the final output from the threads
output = {}
for key, value in result.items():
    output[key] = value.get()
print ("\nOutput aggregated in a Dictionary:")
print (output)
print ("\n")

print ("\nPretty printed output: ")
for key, value in output.items():
    print (key + "\n")
    print (value)