我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。
如何清楚地显示为多线程划分的任务?
我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。
如何清楚地显示为多线程划分的任务?
当前回答
Alex Martelli的回答对我有所帮助。不过,这里有一个我认为更有用的修改版本(至少对我来说)。
更新:可在Python 2和Python 3中使用
try:
# For Python 3
import queue
from urllib.request import urlopen
except:
# For Python 2
import Queue as queue
from urllib2 import urlopen
import threading
worker_data = ['http://google.com', 'http://yahoo.com', 'http://bing.com']
# Load up a queue with your data. This will handle locking
q = queue.Queue()
for url in worker_data:
q.put(url)
# Define a worker function
def worker(url_queue):
queue_full = True
while queue_full:
try:
# Get your data off the queue, and do some work
url = url_queue.get(False)
data = urlopen(url).read()
print(len(data))
except queue.Empty:
queue_full = False
# Create as many threads as you want
thread_count = 5
for i in range(thread_count):
t = threading.Thread(target=worker, args = (q,))
t.start()
其他回答
使用全新的concurrent.futures模块
def sqr(val):
import time
time.sleep(0.1)
return val * val
def process_result(result):
print(result)
def process_these_asap(tasks):
import concurrent.futures
with concurrent.futures.ProcessPoolExecutor() as executor:
futures = []
for task in tasks:
futures.append(executor.submit(sqr, task))
for future in concurrent.futures.as_completed(futures):
process_result(future.result())
# Or instead of all this just do:
# results = executor.map(sqr, tasks)
# list(map(process_result, results))
def main():
tasks = list(range(10))
print('Processing {} tasks'.format(len(tasks)))
process_these_asap(tasks)
print('Done')
return 0
if __name__ == '__main__':
import sys
sys.exit(main())
执行器方法对于所有以前接触过Java的人来说似乎都很熟悉。
还有一个附带说明:为了保持宇宙的正常,如果你不使用上下文,不要忘记关闭你的池/执行器(这是如此棒,它为你做了)
注意:对于Python中的实际并行化,您应该使用多处理模块来分叉并行执行的多个进程(由于全局解释器锁,Python线程提供了交织,但实际上它们是串行执行的,而不是并行执行的,并且仅在交织I/O操作时有用)。
然而,如果您只是在寻找交错(或者正在执行可以并行化的I/O操作,尽管存在全局解释器锁),那么线程模块就是开始的地方。作为一个非常简单的例子,让我们考虑通过并行对子范围求和来对大范围求和的问题:
import threading
class SummingThread(threading.Thread):
def __init__(self,low,high):
super(SummingThread, self).__init__()
self.low=low
self.high=high
self.total=0
def run(self):
for i in range(self.low,self.high):
self.total+=i
thread1 = SummingThread(0,500000)
thread2 = SummingThread(500000,1000000)
thread1.start() # This actually causes the thread to run
thread2.start()
thread1.join() # This waits until the thread has completed
thread2.join()
# At this point, both threads have completed
result = thread1.total + thread2.total
print result
请注意,以上是一个非常愚蠢的示例,因为它绝对没有I/O,并且由于全局解释器锁,虽然在CPython中交错执行(增加了上下文切换的开销),但仍将串行执行。
使用线程/多处理的最简单方法是使用更多高级库,如autothread。
import autothread
from time import sleep as heavyworkload
@autothread.multithreaded() # <-- This is all you need to add
def example(x: int, y: int):
heavyworkload(1)
return x*y
现在,您可以为函数提供int列表。Autothread将为您处理所有事务,并只提供并行计算的结果。
result = example([1, 2, 3, 4, 5], 10)
作为第二个anwser的python3版本:
import queue as Queue
import threading
import urllib.request
# Called by each thread
def get_url(q, url):
q.put(urllib.request.urlopen(url).read())
theurls = ["http://google.com", "http://yahoo.com", "http://www.python.org","https://wiki.python.org/moin/"]
q = Queue.Queue()
def thread_func():
for u in theurls:
t = threading.Thread(target=get_url, args = (q,u))
t.daemon = True
t.start()
s = q.get()
def non_thread_func():
for u in theurls:
get_url(q,u)
s = q.get()
您可以测试它:
start = time.time()
thread_func()
end = time.time()
print(end - start)
start = time.time()
non_thread_func()
end = time.time()
print(end - start)
non_thread_func()花费的时间应该是thread_func()的4倍
这里是多线程,有一个简单的例子会很有帮助。您可以运行它并轻松了解多线程在Python中的工作方式。我使用了一个锁来防止访问其他线程,直到前面的线程完成它们的工作。通过使用这行代码,
t锁定=线程。有界信号量(值=4)
您可以一次允许多个进程,并保留将在稍后或完成之前的进程后运行的其余线程。
import threading
import time
#tLock = threading.Lock()
tLock = threading.BoundedSemaphore(value=4)
def timer(name, delay, repeat):
print "\r\nTimer: ", name, " Started"
tLock.acquire()
print "\r\n", name, " has the acquired the lock"
while repeat > 0:
time.sleep(delay)
print "\r\n", name, ": ", str(time.ctime(time.time()))
repeat -= 1
print "\r\n", name, " is releaseing the lock"
tLock.release()
print "\r\nTimer: ", name, " Completed"
def Main():
t1 = threading.Thread(target=timer, args=("Timer1", 2, 5))
t2 = threading.Thread(target=timer, args=("Timer2", 3, 5))
t3 = threading.Thread(target=timer, args=("Timer3", 4, 5))
t4 = threading.Thread(target=timer, args=("Timer4", 5, 5))
t5 = threading.Thread(target=timer, args=("Timer5", 0.1, 5))
t1.start()
t2.start()
t3.start()
t4.start()
t5.start()
print "\r\nMain Complete"
if __name__ == "__main__":
Main()