如何以最有效的内存和时间方式获取大文件的行数?

def file_len(filename):
    with open(filename) as f:
        for i, _ in enumerate(f):
            pass
    return i + 1

当前回答

def line_count(path):
    count = 0
    with open(path) as lines:
        for count, l in enumerate(lines, start=1):
            pass
    return count

其他回答

如果你想在Linux下的Python中廉价地获取行数,我推荐这个方法:

import os
print os.popen("wc -l file_path").readline().split()[0]

File_path可以是抽象文件路径,也可以是相对路径。希望这能有所帮助。

这个怎么样?

import fileinput
import sys

counter=0
for line in fileinput.input([sys.argv[1]]):
    counter+=1

fileinput.close()
print counter

这个呢

def file_len(fname):
  counts = itertools.count()
  with open(fname) as f: 
    for _ in f: counts.next()
  return counts.next()

为什么不读取前100行和后100行,然后估计平均行长,然后用这些数字除以总文件大小呢?如果你不需要一个确切的值,这可以工作。

我不得不在类似的问题上发表这篇文章,直到我的声誉分数上升了一点(感谢那些撞了我的人!)。

所有这些解决方案都忽略了一种使其运行得更快的方法,即使用无缓冲(原始)接口,使用字节数组,并进行自己的缓冲。(这只适用于Python 3。在Python 2中,原始接口在默认情况下可以使用,也可以不使用,但在Python 3中,您将默认使用Unicode。)

使用一个修改版本的计时工具,我相信下面的代码比任何提供的解决方案都更快(并且稍微更python化):

def rawcount(filename):
    f = open(filename, 'rb')
    lines = 0
    buf_size = 1024 * 1024
    read_f = f.raw.read

    buf = read_f(buf_size)
    while buf:
        lines += buf.count(b'\n')
        buf = read_f(buf_size)

    return lines

使用单独的生成器函数,运行速度会快一点:

def _make_gen(reader):
    b = reader(1024 * 1024)
    while b:
        yield b
        b = reader(1024*1024)

def rawgencount(filename):
    f = open(filename, 'rb')
    f_gen = _make_gen(f.raw.read)
    return sum( buf.count(b'\n') for buf in f_gen )

这完全可以用itertools内嵌的生成器表达式来完成,但它看起来非常奇怪:

from itertools import (takewhile,repeat)

def rawincount(filename):
    f = open(filename, 'rb')
    bufgen = takewhile(lambda x: x, (f.raw.read(1024*1024) for _ in repeat(None)))
    return sum( buf.count(b'\n') for buf in bufgen )

以下是我的时间安排:

function      average, s  min, s   ratio
rawincount        0.0043  0.0041   1.00
rawgencount       0.0044  0.0042   1.01
rawcount          0.0048  0.0045   1.09
bufcount          0.008   0.0068   1.64
wccount           0.01    0.0097   2.35
itercount         0.014   0.014    3.41
opcount           0.02    0.02     4.83
kylecount         0.021   0.021    5.05
simplecount       0.022   0.022    5.25
mapcount          0.037   0.031    7.46