我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

你可以使用timeit。

下面是一个示例,说明如何使用Python REPL测试naive_func,该函数接受参数:

>>> import timeit                                                                                         

>>> def naive_func(x):                                                                                    
...     a = 0                                                                                             
...     for i in range(a):                                                                                
...         a += i                                                                                        
...     return a                                                                                          

>>> def wrapper(func, *args, **kwargs):                                                                   
...     def wrapper():                                                                                    
...         return func(*args, **kwargs)                                                                  
...     return wrapper                                                                                    

>>> wrapped = wrapper(naive_func, 1_000)                                                                  

>>> timeit.timeit(wrapped, number=1_000_000)                                                              
0.4458435332577161  

若函数并没有任何参数,那个么就不需要包装函数。

其他回答

你可以使用timeit。

下面是一个示例,说明如何使用Python REPL测试naive_func,该函数接受参数:

>>> import timeit                                                                                         

>>> def naive_func(x):                                                                                    
...     a = 0                                                                                             
...     for i in range(a):                                                                                
...         a += i                                                                                        
...     return a                                                                                          

>>> def wrapper(func, *args, **kwargs):                                                                   
...     def wrapper():                                                                                    
...         return func(*args, **kwargs)                                                                  
...     return wrapper                                                                                    

>>> wrapped = wrapper(naive_func, 1_000)                                                                  

>>> timeit.timeit(wrapped, number=1_000_000)                                                              
0.4458435332577161  

若函数并没有任何参数,那个么就不需要包装函数。

除了ipython中的%timeit之外,您还可以使用%%timeit进行多行代码片段:

In [1]: %%timeit
   ...: complex_func()
   ...: 2 + 2 == 5
   ...:
   ...:

1 s ± 1.93 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

同样,它也可以以同样的方式在jupyter笔记本中使用,只需将magic%%timeit放在单元格的开头。

在python3上:

from time import sleep, perf_counter as pc
t0 = pc()
sleep(1)
print(pc()-t0)

优雅而短小。

使用time.time来测量执行情况,可以获得命令的总体执行时间,包括计算机上其他进程花费的运行时间。这是用户注意到的时候,但如果你想比较不同的代码片段/算法/函数/。。。

有关timeit的更多信息:

使用timeit模块timeit–对少量Python代码的执行进行计时

如果您想深入了解剖析:

http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code如何评测python脚本?

更新:我使用http://pythonhosted.org/line_profiler/在过去的一年中,我们做了很多工作,发现它非常有用,建议使用它来代替Pythons配置文件模块。

对于Python 3

如果使用时间模块,则可以获取当前时间戳,然后执行代码,然后再次获取时间戳。现在,所用时间将是第一个时间戳减去第二个时间戳:

import time

first_stamp = int(round(time.time() * 1000))

# YOUR CODE GOES HERE
time.sleep(5)

second_stamp = int(round(time.time() * 1000))

# Calculate the time taken in milliseconds
time_taken = second_stamp - first_stamp

# To get time in seconds:
time_taken_seconds = round(time_taken / 1000)
print(f'{time_taken_seconds} seconds or {time_taken} milliseconds')