假设您在Java中有一个链表结构。它由节点组成:

class Node {
    Node next;
    // some user data
}

每个节点都指向下一个节点,除了最后一个节点,它的next为空。假设有一种可能性,列表可以包含一个循环-即最后的节点,而不是有一个空值,有一个引用到列表中它之前的一个节点。

最好的写作方式是什么

boolean hasLoop(Node first)

如果给定的节点是带有循环的列表的第一个,则返回true,否则返回false ?你怎么能写出一个常数的空间和合理的时间呢?

下面是一个带有循环的列表的图片:


当前回答

public boolean isCircular() {

    if (head == null)
        return false;

    Node temp1 = head;
    Node temp2 = head;

    try {
        while (temp2.next != null) {

            temp2 = temp2.next.next.next;
            temp1 = temp1.next;

            if (temp1 == temp2 || temp1 == temp2.next) 
                return true;    

        }
    } catch (NullPointerException ex) {
        return false;

    }

    return false;

}

其他回答

我不确定这个答案是否适用于Java,但我仍然认为它属于这里:

当我们在现代体系结构中使用指针时,我们可以期望它们是CPU字对齐的。对于64位体系结构,这意味着指针的前3位始终为零。这让我们可以使用这个内存来标记我们已经见过的指针,通过对它们的第一个比特写入1。

如果我们遇到一个指针,它的第一个位已经写了1,那么我们已经成功地找到了一个循环,之后我们需要再次遍历结构,并将这些位屏蔽掉。完成了!

这种方法被称为指针标记,它在低级编程中被过度使用,例如Haskell在一些优化中使用它。

你也可以使用上述答案中所建议的弗洛伊德乌龟算法。

该算法可以检查单链表是否具有闭合循环。 这可以通过迭代带有两个移动速度不同的指针的列表来实现。通过这种方式,如果存在一个循环,两个指针将在未来的某个时间点相遇。

请随意查看我关于链表数据结构的博客文章,在那里我还包含了一个用java语言实现上述算法的代码片段。

问候,

安德烈亚斯 (@xnorcode)

检测链表中的循环可以用最简单的方法之一来完成,使用hashmap会导致O(N)复杂度,使用基于排序的方法会导致O(NlogN)复杂度。

当您从head开始遍历列表时,创建一个已排序的地址列表。当您插入一个新地址时,检查该地址是否已经在已排序的列表中,这需要O(logN)复杂度。

下面是快速/慢速解决方案的改进,它正确地处理奇数长度的列表并提高了清晰度。

boolean hasLoop(Node first) {
    Node slow = first;
    Node fast = first;

    while(fast != null && fast.next != null) {
        slow = slow.next;          // 1 hop
        fast = fast.next.next;     // 2 hops 

        if(slow == fast)  // fast caught up to slow, so there is a loop
            return true;
    }
    return false;  // fast reached null, so the list terminates
}

这段代码经过优化,将比选择的最佳答案更快地产生结果。这段代码避免了进入一个非常长的追逐向前和向后节点指针的过程,如果我们遵循'最佳答案'方法,在以下情况下将发生这种情况。看一下下面的演练,你就会明白我想说的是什么。然后通过下面给出的方法来观察问题,并测量否。为了找到答案所采取的步骤。

1 - > 2 - > 9 - > 3 ^ -- -- -- -- -- -- -- - ^

代码如下:

boolean loop(node *head)
{
 node *back=head;
 node *front=head;

 while(front && front->next)
 {
  front=front->next->next;
  if(back==front)
  return true;
  else
  back=back->next;
 }
return false
}