下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

让我们想象一下(你会永远记住),

熊猫:

轴=0表示沿着“索引”。这是一个行运算。

假设,要对dataframe1和dataframe2执行concat()操作, 我们将从dataframe1中取出第一行并放入新的DF中,然后我们从dataframe1中取出另一行并放入新的DF中,我们重复这个过程,直到我们到达dataframe1的底部。然后,我们对dataframe2执行相同的过程。

基本上,将dataframe2堆叠在dataframe1之上,反之亦然。

在桌子或地板上堆一堆书

轴=1表示沿着“列”。这是一个按列的运算。

假设,要对dataframe1和dataframe2执行concat()操作, 我们将取出第一个完整的列(a.k.)。第一个系列)的dataframe1,并放置到新的DF,然后我们拿出dataframe1的第二列,并保持相邻的(侧),我们必须重复这个操作,直到所有列完成。然后,我们在dataframe2上重复相同的过程。 基本上, 横向堆叠dataframe2。

把书摆放在书架上。

更重要的是,与矩阵相比,数组更好地表示嵌套的n维结构!所以下面可以帮助你更直观地看到轴是如何在一维以上的情况下发挥重要作用的。此外,你实际上可以打印/写入/绘制/可视化任何n-dim数组,但在矩阵表示(3-dim)中书写或可视化相同的内容在超过3维的纸张上是不可能的。

其他回答

Axis指的是数组的维度,在pd的情况下。DataFrames轴=0是指向下方的维度,轴=1是指向右侧的维度。

示例:考虑一个形状为(3,5,7)的ndarray。

a = np.ones((3,5,7))

A是一个三维ndarray,即它有3个轴(“axis”是“axis”的复数)。a的构型看起来就像3片面包每片的尺寸都是5乘7。A[0,:,:]表示第0个切片,A[1,:,:]表示第1个切片,等等。

a.s sum(axis=0)将沿着a的第0个轴应用sum()。你将添加所有的切片,最终得到一个形状(5,7)的切片。

a.s sum(axis=0)等价于

b = np.zeros((5,7))
for i in range(5):
    for j in range(7):
        b[i,j] += a[:,i,j].sum()

B和a.sum(轴=0)看起来都是这样的

array([[ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.]])

在警局里。DataFrame,轴的工作方式与numpy相同。数组:axis=0将对每一列应用sum()或任何其他约简函数。

注意:在@zhangxaochen的回答中,我发现“沿着行”和“沿着列”这两个短语有点让人困惑。Axis =0表示“沿每列”,Axis =1表示“沿每行”。

我的想法是:Axis = n,其中n = 0,1等意味着矩阵沿该轴折叠(折叠)。所以在一个二维矩阵中,当你沿着0(行)折叠时,你实际上是一次对一列进行操作。对于高阶矩阵也是如此。

这与对矩阵中维数的正常引用不同,其中0 ->行和1 ->列。对于N维数组中的其他维度也是如此。

记住轴1(列)与轴0(行)的简单方法之一是您期望的输出。

如果你希望每行都有输出,使用axis='columns', 另一方面,如果你想为每一列输出,你可以使用axis='rows'。

实际上我们不需要记住轴=0轴=1代表什么。 有时,axis可以是一个元组:例如axis=(0,1)我们如何理解这样多个dim轴?

我发现如果我们理解python slice[:]是如何工作的,就会更容易。

假设我们有一个一维数组: A = [0,1,0]

a[:] # select all the elements in array a

假设我们有一个2d数组:

M = [[0, 0, 1],
     [1, 0, 0],
     [0, 2, 1],
     [2, 0, 2],
     [3, 1, 0]]
M[1,:] # M[0]=1, M[1]=* --> [1, 0, 0]
M[:,2] # M[0]=*, M[1]=2 --> [1, 0, 1, 2, 0]
M[:,:] # M[0]=*, M[1]=* --> all the elements in M are selected

当计算时:

np.sum(M, axis=0) # [sum(M[:,0]), sum(M[:,1]), sum(M[:,2])]
np.sum(M, axis=1) # [sum(M[0,:]), sum(M[1,:]), sum(M[2,:]), sum(M[3,:]), sum(M[4,:])]
np.sum(M, axis=-1) # -1 means last dim, it's the same with np.sum(M, axis=1)
np.sum(M, axis=(0,1)) # sum(M[:,:])

规则很简单,当计算时将axis中指定的暗值替换为:。

我是这样理解的:

比如说,如果你的操作需要在数据框架中从左到右/从右到左,你显然是在合并列。你在不同的列上操作。 这是轴=1

例子

df = pd.DataFrame(np.arange(12).reshape(3,4),columns=['A', 'B', 'C', 'D'])
print(df)
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11 

df.mean(axis=1)

0    1.5
1    5.5
2    9.5
dtype: float64

df.drop(['A','B'],axis=1,inplace=True)

    C   D
0   2   3
1   6   7
2  10  11

这里需要注意的是,我们是在列上操作

类似地,如果您的操作需要在数据帧中从上到下/从下到上遍历,那么您正在合并行。轴为0。