下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

The easiest way for me to understand is to talk about whether you are calculating a statistic for each column (axis = 0) or each row (axis = 1). If you calculate a statistic, say a mean, with axis = 0 you will get that statistic for each column. So if each observation is a row and each variable is in a column, you would get the mean of each variable. If you set axis = 1 then you will calculate your statistic for each row. In our example, you would get the mean for each observation across all of your variables (perhaps you want the average of related measures).

轴= 0:按列=按列=沿行

轴= 1:按行=按行=沿列

其他回答

axis=1,它将给出行和,keepdims=True将保持2D维度。 希望对你有所帮助。

这里的许多答案对我帮助很大!

如果你对Python中的axis和R中的MARGIN的不同行为感到困惑(比如在apply函数中),你可以找到我写的一篇感兴趣的博客文章:https://accio.github.io/programming/2020/05/19/numpy-pandas-axis.html。

从本质上讲:

Their behaviours are, intriguingly, easier to understand with three-dimensional array than with two-dimensional arrays. In Python packages numpy and pandas, the axis parameter in sum actually specifies numpy to calculate the mean of all values that can be fetched in the form of array[0, 0, ..., i, ..., 0] where i iterates through all possible values. The process is repeated with the position of i fixed and the indices of other dimensions vary one after the other (from the most far-right element). The result is a n-1-dimensional array. In R, the MARGINS parameter let the apply function calculate the mean of all values that can be fetched in the form of array[, ... , i, ... ,] where i iterates through all possible values. The process is not repeated when all i values have been iterated. Therefore, the result is a simple vector.

它指定了计算平均值的轴。默认情况下axis=0。这与numpy一致。显式指定axis时的平均使用量(在numpy中)。mean, axis==None,默认情况下,它计算扁平数组上的平均值),其中,沿行轴=0(即,以pandas为单位的索引),沿列轴=1。为了增加清晰度,可以选择指定axis='index'(而不是axis=0)或axis='columns'(而不是axis=1)。

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|----axis=1----->
+------------+---------+--------+
             |         |
             | axis=0  |
             ↓         ↓

我认为还有另一种理解方式。

对于np。数组,如果我们想要消除列,我们使用axis = 1;如果我们想消除行,我们使用axis = 0。

np.mean(np.array(np.ones(shape=(3,5,10))),axis = 0).shape # (5,10)
np.mean(np.array(np.ones(shape=(3,5,10))),axis = 1).shape # (3,10)
np.mean(np.array(np.ones(shape=(3,5,10))),axis = (0,1)).shape # (10,)

对于pandas对象,axis = 0表示按行操作,axis = 1表示按列操作。这与numpy的定义不同,我们可以检查numpy.doc和pandas.doc的定义

轴在编程中是形状元组中的位置。这里有一个例子:

import numpy as np

a=np.arange(120).reshape(2,3,4,5)

a.shape
Out[3]: (2, 3, 4, 5)

np.sum(a,axis=0).shape
Out[4]: (3, 4, 5)

np.sum(a,axis=1).shape
Out[5]: (2, 4, 5)

np.sum(a,axis=2).shape
Out[6]: (2, 3, 5)

np.sum(a,axis=3).shape
Out[7]: (2, 3, 4)

轴上的均值将导致该维度被移除。

参考原题,dff形状为(1,2)。使用axis=1将形状更改为(1,)。