下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

这是基于@Safak的回答。 理解pandas/numpy中的轴的最好方法是创建一个3d数组,并沿着3个不同的轴检查求和函数的结果。

 a = np.ones((3,5,7))

A将是:

    array([[[1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.]],

   [[1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.]],

   [[1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.]]])

现在检查数组中每个轴上元素的和:

 x0 = np.sum(a,axis=0)
 x1 = np.sum(a,axis=1)
 x2 = np.sum(a,axis=2)

会给你以下结果:

   x0 :
   array([[3., 3., 3., 3., 3., 3., 3.],
        [3., 3., 3., 3., 3., 3., 3.],
        [3., 3., 3., 3., 3., 3., 3.],
        [3., 3., 3., 3., 3., 3., 3.],
        [3., 3., 3., 3., 3., 3., 3.]])

   x1 : 
   array([[5., 5., 5., 5., 5., 5., 5.],
   [5., 5., 5., 5., 5., 5., 5.],
   [5., 5., 5., 5., 5., 5., 5.]])

  x2 :
   array([[7., 7., 7., 7., 7.],
        [7., 7., 7., 7., 7.],
        [7., 7., 7., 7., 7.]])

其他回答

轴= 0表示从上到下 轴= 1表示从左到右

sums[key] = lang_sets[key].iloc[:,1:].sum(axis=0)

给定的例子是取column == key中所有数据的和。

数组被设计为坐标轴=0,行被垂直放置,而坐标轴=1,列被水平放置。Axis指的是数组的尺寸。

我的想法是:Axis = n,其中n = 0,1等意味着矩阵沿该轴折叠(折叠)。所以在一个二维矩阵中,当你沿着0(行)折叠时,你实际上是一次对一列进行操作。对于高阶矩阵也是如此。

这与对矩阵中维数的正常引用不同,其中0 ->行和1 ->列。对于N维数组中的其他维度也是如此。

让我们看看Wiki上的表格。这是国际货币基金组织对2010年至2019年前十大国家GDP的估计。

1. 如果你想计算每个国家过去十年(2010-2019)的平均GDP,你需要做,df.mean(轴=1)。例如,如果你想计算美国从2010年到2019年的平均GDP, df。loc['美国',' 2010 ':' 2019 '].mean(轴= 1)

2. 如果我想计算所有国家每年的平均GDP(平均值),你需要做,df.mean(轴=0)。例如,如果你想计算2015年美国、中国、日本、德国和印度的平均GDP, df。loc(“美国”:“印度”,' 2015 '].mean(轴= 0) 注意:上述代码只有在使用set_index方法将“国家(或附属领土)”列设置为索引后才能工作。

在过去的一个小时里,我也一直在试着求出坐标轴。上述所有答案中的语言,以及文档都没有任何帮助。

要回答我现在理解的问题,在Pandas中,axis = 1或0意味着在应用函数时希望保持哪个轴头不变。

注意:当我说标题时,我指的是索引名

扩展你的例子:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      X     | 0.626386| 1.52325|
+------------+---------+--------+
|      Y     | 0.626386| 1.52325|
+------------+---------+--------+

对于axis=1=columns:我们保持列标题不变,并通过改变数据应用平均值函数。 为了演示,我们保持列标题为常量:

+------------+---------+--------+
|            |  A      |  B     |

现在我们填充A和B值的一个集合,然后找到平均值

|            | 0.626386| 1.52325|  

然后我们填充下一组A和B值,并找到平均值

|            | 0.626386| 1.52325|

类似地,对于axis=rows,我们保持行标题不变,并不断更改数据: 为了演示,首先修复行标题:

+------------+
|      X     |
+------------+
|      Y     |
+------------+

现在填充第一组X和Y值,然后求平均值

+------------+---------+
|      X     | 0.626386
+------------+---------+
|      Y     | 0.626386
+------------+---------+

然后填充下一组X和Y值,然后找到平均值:

+------------+---------+
|      X     | 1.52325 |
+------------+---------+
|      Y     | 1.52325 |
+------------+---------+

总之,

当axis=columns时,将修复列标题并更改数据,这些数据将来自不同的行。

当axis=rows时,您将修复行标题并更改数据,这些数据将来自不同的列。