我在Python中有两个列表:
temp1 = ['One', 'Two', 'Three', 'Four']
temp2 = ['One', 'Two']
假设每个列表中的元素都是唯一的,我想用第一个列表中的项创建第三个列表,这些项不在第二个列表中:
temp3 = ['Three', 'Four']
有没有没有周期和检查的快速方法?
我在Python中有两个列表:
temp1 = ['One', 'Two', 'Three', 'Four']
temp2 = ['One', 'Two']
假设每个列表中的元素都是唯一的,我想用第一个列表中的项创建第三个列表,这些项不在第二个列表中:
temp3 = ['Three', 'Four']
有没有没有周期和检查的快速方法?
当前回答
我知道这个问题已经得到了很好的答案,但我希望使用numpy添加以下方法。
temp1 = ['One', 'Two', 'Three', 'Four']
temp2 = ['One', 'Two']
list(np.setdiff1d(temp1,temp2))
['Four', 'Three'] #Output
其他回答
我想要一个能够使用两个列表并能做diff in bash所做的事情的东西。因为当你搜索“python diff two lists”时,这个问题首先会弹出,而且不是很具体,所以我会把我想到的贴出来。
使用difflib中的SequenceMather,你可以像diff一样比较两个列表。其他答案都不会告诉你差异发生的位置,但这个答案可以。有些答案只给出了一个方向上的差异。有些元素会重新排序。有些公司不处理副本。但是这个解决方案让你在两个列表之间有了真正的区别:
a = 'A quick fox jumps the lazy dog'.split()
b = 'A quick brown mouse jumps over the dog'.split()
from difflib import SequenceMatcher
for tag, i, j, k, l in SequenceMatcher(None, a, b).get_opcodes():
if tag == 'equal': print('both have', a[i:j])
if tag in ('delete', 'replace'): print(' 1st has', a[i:j])
if tag in ('insert', 'replace'): print(' 2nd has', b[k:l])
这个输出:
both have ['A', 'quick']
1st has ['fox']
2nd has ['brown', 'mouse']
both have ['jumps']
2nd has ['over']
both have ['the']
1st has ['lazy']
both have ['dog']
当然,如果您的应用程序做出了与其他答案相同的假设,那么您将从中受益最大。但如果你正在寻找一个真正的差异功能,那么这是唯一的方法。
例如,其他答案都无法处理:
a = [1,2,3,4,5]
b = [5,4,3,2,1]
但这一个有:
2nd has [5, 4, 3, 2]
both have [1]
1st has [2, 3, 4, 5]
现有的解决方案都提供了其中的一个或另一个:
比O(n*m)性能快。 保持输入列表的顺序。
但到目前为止,还没有一种解决方案兼而有之。如果你两者都想要,试试这个:
s = set(temp2)
temp3 = [x for x in temp1 if x not in s]
性能测试
import timeit
init = 'temp1 = list(range(100)); temp2 = [i * 2 for i in range(50)]'
print timeit.timeit('list(set(temp1) - set(temp2))', init, number = 100000)
print timeit.timeit('s = set(temp2);[x for x in temp1 if x not in s]', init, number = 100000)
print timeit.timeit('[item for item in temp1 if item not in temp2]', init, number = 100000)
结果:
4.34620224079 # ars' answer
4.2770634955 # This answer
30.7715615392 # matt b's answer
我提出的方法以及保持顺序也比集合减法(稍微)快,因为它不需要构造一个不必要的集合。如果第一个列表比第二个列表长得多,并且散列代价昂贵,那么性能差异将更加明显。下面是第二个测试:
init = '''
temp1 = [str(i) for i in range(100000)]
temp2 = [str(i * 2) for i in range(50)]
'''
结果:
11.3836875916 # ars' answer
3.63890368748 # this answer (3 times faster!)
37.7445402279 # matt b's answer
这里有一个简单的方法来区分两个列表(无论内容是什么),你可以得到如下所示的结果:
>>> from sets import Set
>>>
>>> l1 = ['xvda', False, 'xvdbb', 12, 'xvdbc']
>>> l2 = ['xvda', 'xvdbb', 'xvdbc', 'xvdbd', None]
>>>
>>> Set(l1).symmetric_difference(Set(l2))
Set([False, 'xvdbd', None, 12])
希望这对你有所帮助。
我更喜欢使用转换到集,然后使用“差分()”函数。完整的代码是:
temp1 = ['One', 'Two', 'Three', 'Four' ]
temp2 = ['One', 'Two']
set1 = set(temp1)
set2 = set(temp2)
set3 = set1.difference(set2)
temp3 = list(set3)
print(temp3)
输出:
>>>print(temp3)
['Three', 'Four']
这是最容易理解的,而且在将来,如果你处理大型数据,将其转换为集合将删除不需要的重复项。希望能有所帮助;-)
如果你想要递归的区别,我写了一个python包: https://github.com/seperman/deepdiff
安装
从PyPi安装:
pip install deepdiff
示例使用
进口
>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function # In case running on Python 2
同一对象返回空
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> print(DeepDiff(t1, t2))
{}
项目类型发生变化
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> pprint(DeepDiff(t1, t2), indent=2)
{ 'type_changes': { 'root[2]': { 'newtype': <class 'str'>,
'newvalue': '2',
'oldtype': <class 'int'>,
'oldvalue': 2}}}
某项的值已更改
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> pprint(DeepDiff(t1, t2), indent=2)
{'values_changed': {'root[2]': {'newvalue': 4, 'oldvalue': 2}}}
项目添加和/或删除
>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff)
{'dic_item_added': ['root[5]', 'root[6]'],
'dic_item_removed': ['root[4]'],
'values_changed': {'root[2]': {'newvalue': 4, 'oldvalue': 2}}}
字符串的区别
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'values_changed': { 'root[2]': {'newvalue': 4, 'oldvalue': 2},
"root[4]['b']": { 'newvalue': 'world!',
'oldvalue': 'world'}}}
字符串差2
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'values_changed': { "root[4]['b']": { 'diff': '--- \n'
'+++ \n'
'@@ -1,5 +1,4 @@\n'
'-world!\n'
'-Goodbye!\n'
'+world\n'
' 1\n'
' 2\n'
' End',
'newvalue': 'world\n1\n2\nEnd',
'oldvalue': 'world!\n'
'Goodbye!\n'
'1\n'
'2\n'
'End'}}}
>>>
>>> print (ddiff['values_changed']["root[4]['b']"]["diff"])
---
+++
@@ -1,5 +1,4 @@
-world!
-Goodbye!
+world
1
2
End
类型变化
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'type_changes': { "root[4]['b']": { 'newtype': <class 'str'>,
'newvalue': 'world\n\n\nEnd',
'oldtype': <class 'list'>,
'oldvalue': [1, 2, 3]}}}
列表的区别
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3, 4]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{'iterable_item_removed': {"root[4]['b'][2]": 3, "root[4]['b'][3]": 4}}
差异2:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2, 3]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'iterable_item_added': {"root[4]['b'][3]": 3},
'values_changed': { "root[4]['b'][1]": {'newvalue': 3, 'oldvalue': 2},
"root[4]['b'][2]": {'newvalue': 2, 'oldvalue': 3}}}
列出差异忽略顺序或重复项:(使用与上面相同的字典)
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2, 3]}}
>>> ddiff = DeepDiff(t1, t2, ignore_order=True)
>>> print (ddiff)
{}
包含字典的列表:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'dic_item_removed': ["root[4]['b'][2][2]"],
'values_changed': {"root[4]['b'][2][1]": {'newvalue': 3, 'oldvalue': 1}}}
集:
>>> t1 = {1, 2, 8}
>>> t2 = {1, 2, 3, 5}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (DeepDiff(t1, t2))
{'set_item_added': ['root[3]', 'root[5]'], 'set_item_removed': ['root[8]']}
叫元组:
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> t1 = Point(x=11, y=22)
>>> t2 = Point(x=11, y=23)
>>> pprint (DeepDiff(t1, t2))
{'values_changed': {'root.y': {'newvalue': 23, 'oldvalue': 22}}}
自定义对象:
>>> class ClassA(object):
... a = 1
... def __init__(self, b):
... self.b = b
...
>>> t1 = ClassA(1)
>>> t2 = ClassA(2)
>>>
>>> pprint(DeepDiff(t1, t2))
{'values_changed': {'root.b': {'newvalue': 2, 'oldvalue': 1}}}
对象属性添加:
>>> t2.c = "new attribute"
>>> pprint(DeepDiff(t1, t2))
{'attribute_added': ['root.c'],
'values_changed': {'root.b': {'newvalue': 2, 'oldvalue': 1}}}