我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?


当前回答

维基百科的解释是:

通常,快速排序在实践中比其他Θ(nlogn)算法要快得多,因为它的内部循环可以在大多数架构上有效地实现,并且在大多数现实数据中,可以做出设计选择,使需要二次时间的概率最小化。

快速排序

Mergesort

我认为归并排序(即Ω(n))所需要的存储量也存在快速排序实现所不具备的问题。在最坏的情况下,它们的算法时间是相同的,但归并排序需要更多的存储空间。

其他回答

我想在现有的优秀答案中添加一些关于快速排序在偏离最佳情况时的表现以及这种情况的可能性的数学,我希望这将帮助人们更好地理解为什么O(n²)情况在更复杂的快速排序实现中不是真正的问题。

除了随机访问问题之外,还有两个主要因素会影响快速排序的性能,它们都与主元与正在排序的数据的比较有关。

1) A small number of keys in the data. A dataset of all the same value will sort in n^2 time on a vanilla 2-partition QuickSort because all of the values except the pivot location are placed on one side each time. Modern implementations address this by methods such as using a 3-partition sort. These methods execute on a dataset of all the same value in O(n) time. So using such an implementation means that an input with a small number of keys actually improves performance time and is no longer a concern.

2)极差的枢轴选择会导致最坏情况的性能。在理想的情况下,主元总是这样,50%的数据是小的,50%的数据是大的,这样在每次迭代中输入将被分成两半。这给了我们n次比较和交换,乘以log-2(n)次递归,时间为O(n*logn)。

非理想的枢轴选择对执行时间的影响有多大?

让我们考虑这样一种情况,其中始终选择主元,这样75%的数据都在主元的一边。它仍然是O(n*logn)但现在对数的底变成了1/0.75或1.33。改变基数时性能的关系始终是一个常数,用log(2)/log(newBase)表示。在这个例子中,这个常数是2.4。所以这种枢轴选择的时间是理想情况的2.4倍。

情况多快会恶化?

不是很快,直到主元选择(始终)非常糟糕:

一侧50%:(理想情况下) 75%在一边:2.4倍长 90%在一边:6.6倍长 95%在一边:13.5倍长 一边99%长69倍

当我们在一边接近100%时,执行的log部分接近n,整个执行渐近接近O(n²)。

In a naive implementation of QuickSort, cases such as a sorted array (for 1st element pivot) or a reverse-sorted array (for last element pivot) will reliably produce a worst-case O(n^2) execution time. Additionally, implementations with a predictable pivot selection can be subjected to DoS attack by data that is designed to produce worst case execution. Modern implementations avoid this by a variety of methods, such as randomizing the data before sort, choosing the median of 3 randomly chosen indexes, etc. With this randomization in the mix, we have 2 cases:

小数据集。最坏的情况是可能的但O(n²)不是灾难性的因为n足够小,所以n²也很小。 大数据集。最坏的情况在理论上是可能的,但在实践中并非如此。

我们看到糟糕表现的可能性有多大?

这种可能性微乎其微。让我们考虑5000个值:

我们假设的实现将使用3个随机选择的索引的中位数来选择一个主元。我们认为在25%-75%范围内的枢轴是“好的”,而在0%-25%或75%-100%范围内的枢轴是“坏的”。如果你使用3个随机索引的中位数来观察概率分布,每次递归都有11/16的机会最终得到一个好的主元。让我们做两个保守的(错误的)假设来简化数学:

好的枢轴总是精确地在25%/75%的分割和2.4*理想情况下运行。我们从来没有得到过理想的分割或者比25/75更好的分割。 糟糕的枢轴总是最坏的情况,基本上对解决方案没有任何贡献。

Our QuickSort implementation will stop at n=10 and switch to an insertion sort, so we require 22 25%/75% pivot partitions to break the 5,000 value input down that far. (10*1.333333^22 > 5000) Or, we require 4990 worst case pivots. Keep in mind that if we accumulate 22 good pivots at any point then the sort will complete, so worst case or anything near it requires extremely bad luck. If it took us 88 recursions to actually achieve the 22 good pivots required to sort down to n=10, that would be 4*2.4*ideal case or about 10 times the execution time of the ideal case. How likely is it that we would not achieve the required 22 good pivots after 88 recursions?

二项概率分布可以回答这个问题,答案是10^-18。(n是88,k是21,p是0.6875)你的用户在点击[排序]的1秒内被闪电击中的可能性大约是他们看到5000个项目排序比10*理想情况更糟糕的1000倍。随着数据集变大,这种可能性会越来越小。以下是一些数组大小以及它们运行时间超过10*理想值的相应机会:

640项数组:10^-13(需要在60次尝试中获得15个良好的枢轴点) 5000项数组:10^-18(需要在88次尝试中有22个良好的枢轴) 40000项的数组:10^-23(需要在116个中有29个好的枢轴)

记住,这是有两个保守的假设,比现实更糟糕。因此,实际性能更好,剩余概率的平衡更接近理想。

最后,正如其他人所提到的,如果递归堆栈太深,即使这些荒谬的不太可能的情况也可以通过切换到堆排序来消除。所以TLDR是,对于快速排序的良好实现,最坏的情况并不存在,因为它已经被设计出来,并且执行在O(n*logn)时间内完成。

One of the reason is more philosophical. Quicksort is Top->Down philosophy. With n elements to sort, there are n! possibilities. With 2 partitions of m & n-m which are mutually exclusive, the number of possibilities go down in several orders of magnitude. m! * (n-m)! is smaller by several orders than n! alone. imagine 5! vs 3! *2!. 5! has 10 times more possibilities than 2 partitions of 2 & 3 each . and extrapolate to 1 million factorial vs 900K!*100K! vs. So instead of worrying about establishing any order within a range or a partition,just establish order at a broader level in partitions and reduce the possibilities within a partition. Any order established earlier within a range will be disturbed later if the partitions themselves are not mutually exclusive.

任何自下而上的排序方法,如归并排序或堆排序,就像工人或雇员的方法一样,人们很早就开始在微观层面进行比较。但是,一旦在它们之间发现了一个元素,这个顺序就必然会丢失。这些方法非常稳定和可预测,但要做一定量的额外工作。

Quick Sort is like Managerial approach where one is not initially concerned about any order , only about meeting a broad criterion with No regard for order. Then the partitions are narrowed until you get a sorted set. The real challenge in Quicksort is in finding a partition or criterion in the dark when you know nothing about the elements to sort. That is why we either need to spend some effort to find a median value or pick 1 at random or some arbitrary "Managerial" approach . To find a perfect median can take significant amount of effort and leads to a stupid bottom up approach again. So Quicksort says just a pick a random pivot and hope that it will be somewhere in the middle or do some work to find median of 3 , 5 or something more to find a better median but do not plan to be perfect & don't waste any time in initially ordering. That seems to do well if you are lucky or sometimes degrades to n^2 when you don't get a median but just take a chance. Any way data is random. right. So I agree more with the top ->down logical approach of quicksort & it turns out that the chance it takes about pivot selection & comparisons that it saves earlier seems to work better more times than any meticulous & thorough stable bottom ->up approach like merge sort. But

快速排序有O(n2)最差情况运行时和O(nlogn)平均情况运行时。然而,在许多情况下,它优于归并排序,因为许多因素影响算法的运行时,并且,当把它们放在一起时,快速排序胜出。

In particular, the often-quoted runtime of sorting algorithms refers to the number of comparisons or the number of swaps necessary to perform to sort the data. This is indeed a good measure of performance, especially since it’s independent of the underlying hardware design. However, other things – such as locality of reference (i.e. do we read lots of elements which are probably in cache?) – also play an important role on current hardware. Quicksort in particular requires little additional space and exhibits good cache locality, and this makes it faster than merge sort in many cases.

此外,通过使用适当的枢轴选择,几乎完全避免快速排序的最坏情况运行时间O(n2)是非常容易的——比如随机选择它(这是一个很好的策略)。

在实践中,许多现代的快速排序实现(特别是libstdc++的std::sort)实际上是introsort,其理论上的最差情况是O(nlogn),与归并排序相同。它通过限制递归深度,并在超过logn时切换到不同的算法(heapsort)来实现这一点。

快速排序和合并排序的小增加。

它还可以依赖于排序项的类型。如果访问项、交换和比较不是简单的操作,就像比较平面内存中的整数一样,那么归并排序可能是更可取的算法。

例如,我们在远程服务器上使用网络协议对项目进行排序。

而且,在像“链表”这样的自定义容器中,也没有快速排序的好处。 1. 对链表进行归并排序,不需要额外的内存。 2. 快速排序中对元素的访问不是顺序的(在内存中)

快速排序是一种就地排序算法,因此它更适合于数组。另一方面,归并排序需要额外的O(N)存储空间,更适合于链表。

与数组不同,在喜欢列表中,我们可以在中间插入O(1)空间和O(1)时间的项,因此归并排序中的归并操作可以在不需要任何额外空间的情况下实现。但是,为数组分配和取消分配额外空间会对归并排序的运行时间产生不利影响。归并排序也有利于链表,因为数据是按顺序访问的,没有太多的随机内存访问。

另一方面,快速排序需要大量的随机内存访问,而使用数组,我们可以直接访问内存,而不需要像链表那样进行任何遍历。同样,快速排序用于数组时具有良好的引用局部性,因为数组连续存储在内存中。

尽管这两种排序算法的平均复杂度都是O(NlogN),但通常人们在执行普通任务时使用数组进行存储,因此快速排序应该是首选算法。

编辑:我刚刚发现归并排序最差/最好/平均情况总是nlogn,但快速排序可以从n2(最坏的情况下,元素已经排序)到nlogn(平均/最佳情况下,pivot总是将数组分为两半)。