假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
当前回答
以下是我的完全递归实现的双向图的广度优先搜索的代码,而不使用循环和队列。
public class Graph { public int V; public LinkedList<Integer> adj[]; Graph(int v) { V = v; adj = new LinkedList[v]; for (int i=0; i<v; ++i) adj[i] = new LinkedList<>(); } void addEdge(int v,int w) { adj[v].add(w); adj[w].add(v); } public LinkedList<Integer> getAdjVerted(int vertex) { return adj[vertex]; } public String toString() { String s = ""; for (int i=0;i<adj.length;i++) { s = s +"\n"+i +"-->"+ adj[i] ; } return s; } } //BFS IMPLEMENTATION public static void recursiveBFS(Graph graph, int vertex,boolean visited[], boolean isAdjPrinted[]) { if (!visited[vertex]) { System.out.print(vertex +" "); visited[vertex] = true; } if(!isAdjPrinted[vertex]) { isAdjPrinted[vertex] = true; List<Integer> adjList = graph.getAdjVerted(vertex); printAdjecent(graph, adjList, visited, 0,isAdjPrinted); } } public static void recursiveBFS(Graph graph, List<Integer> vertexList, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < vertexList.size()) { recursiveBFS(graph, vertexList.get(i), visited, isAdjPrinted); recursiveBFS(graph, vertexList, visited, i+1, isAdjPrinted); } } public static void printAdjecent(Graph graph, List<Integer> list, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < list.size()) { if (!visited[list.get(i)]) { System.out.print(list.get(i)+" "); visited[list.get(i)] = true; } printAdjecent(graph, list, visited, i+1, isAdjPrinted); } else { recursiveBFS(graph, list, visited, 0, isAdjPrinted); } }其他回答
我找不到一种完全递归的方法(没有任何辅助数据结构)。但是如果队列Q是通过引用传递的,那么你可以得到下面这个愚蠢的尾部递归函数:
BFS(Q)
{
if (|Q| > 0)
v <- Dequeue(Q)
Traverse(v)
foreach w in children(v)
Enqueue(Q, w)
BFS(Q)
}
如果使用数组来支持二叉树,则可以用代数方法确定下一个节点。如果I是一个节点,那么它的子节点可以在2i + 1(左节点)和2i + 2(右节点)处找到。节点的下一个邻居由i + 1给出,除非i是2的幂
下面是在数组支持的二叉搜索树上实现宽度优先搜索的伪代码。这假设一个固定大小的数组,因此一个固定深度的树。它将查看无父节点,并可能创建难以管理的大堆栈。
bintree-bfs(bintree, elt, i)
if (i == LENGTH)
return false
else if (bintree[i] == elt)
return true
else
return bintree-bfs(bintree, elt, i+1)
我必须实现以BFS顺序输出的堆遍历。它实际上不是BFS,但完成了相同的任务。
private void getNodeValue(Node node, int index, int[] array) {
array[index] = node.value;
index = (index*2)+1;
Node left = node.leftNode;
if (left!=null) getNodeValue(left,index,array);
Node right = node.rightNode;
if (right!=null) getNodeValue(right,index+1,array);
}
public int[] getHeap() {
int[] nodes = new int[size];
getNodeValue(root,0,nodes);
return nodes;
}
我发现了一个非常漂亮的递归(甚至函数)宽度优先遍历相关算法。不是我的想法,但我认为在这个话题中应该提到它。
Chris Okasaki在http://okasaki.blogspot.de/2008/07/breadth-first-numbering-algorithm-in.html上用3张图片非常清楚地解释了他的ICFP 2000的宽度优先编号算法。
Debasish Ghosh的Scala实现,我在http://debasishg.blogspot.de/2008/09/breadth-first-numbering-okasakis.html找到的,是:
trait Tree[+T]
case class Node[+T](data: T, left: Tree[T], right: Tree[T]) extends Tree[T]
case object E extends Tree[Nothing]
def bfsNumForest[T](i: Int, trees: Queue[Tree[T]]): Queue[Tree[Int]] = {
if (trees.isEmpty) Queue.Empty
else {
trees.dequeue match {
case (E, ts) =>
bfsNumForest(i, ts).enqueue[Tree[Int]](E)
case (Node(d, l, r), ts) =>
val q = ts.enqueue(l, r)
val qq = bfsNumForest(i+1, q)
val (bb, qqq) = qq.dequeue
val (aa, tss) = qqq.dequeue
tss.enqueue[org.dg.collection.BFSNumber.Tree[Int]](Node(i, aa, bb))
}
}
}
def bfsNumTree[T](t: Tree[T]): Tree[Int] = {
val q = Queue.Empty.enqueue[Tree[T]](t)
val qq = bfsNumForest(1, q)
qq.dequeue._1
}
c#实现的递归宽度优先搜索二叉树算法。
二叉树数据可视化
IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
{"A", new [] {"B", "C"}},
{"B", new [] {"D", "E"}},
{"C", new [] {"F", "G"}},
{"E", new [] {"H"}}
};
void Main()
{
var pathFound = BreadthFirstSearch("A", "H", new string[0]);
Console.WriteLine(pathFound); // [A, B, E, H]
var pathNotFound = BreadthFirstSearch("A", "Z", new string[0]);
Console.WriteLine(pathNotFound); // []
}
IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path)
{
if (start == end)
{
return path.Concat(new[] { end });
}
if (!graph.ContainsKey(start)) { return new string[0]; }
return graph[start].SelectMany(letter => BreadthFirstSearch(letter, end, path.Concat(new[] { start })));
}
如果你想让算法不仅适用于二叉树,而且适用于有两个或两个以上节点指向同一个节点的图,你必须通过持有已经访问过的节点列表来避免自循环。实现可能是这样的。
图形数据可视化
IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
{"A", new [] {"B", "C"}},
{"B", new [] {"D", "E"}},
{"C", new [] {"F", "G", "E"}},
{"E", new [] {"H"}}
};
void Main()
{
var pathFound = BreadthFirstSearch("A", "H", new string[0], new List<string>());
Console.WriteLine(pathFound); // [A, B, E, H]
var pathNotFound = BreadthFirstSearch("A", "Z", new string[0], new List<string>());
Console.WriteLine(pathNotFound); // []
}
IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path, IList<string> visited)
{
if (start == end)
{
return path.Concat(new[] { end });
}
if (!graph.ContainsKey(start)) { return new string[0]; }
return graph[start].Aggregate(new string[0], (acc, letter) =>
{
if (visited.Contains(letter))
{
return acc;
}
visited.Add(letter);
var result = BreadthFirstSearch(letter, end, path.Concat(new[] { start }), visited);
return acc.Concat(result).ToArray();
});
}