假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
当前回答
下面是递归BFS的Scala 2.11.4实现。为了简洁起见,我牺牲了尾部调用优化,但是TCOd版本非常相似。参见@snv的帖子。
import scala.collection.immutable.Queue
object RecursiveBfs {
def bfs[A](tree: Tree[A], target: A): Boolean = {
bfs(Queue(tree), target)
}
private def bfs[A](forest: Queue[Tree[A]], target: A): Boolean = {
forest.dequeueOption exists {
case (E, tail) => bfs(tail, target)
case (Node(value, _, _), _) if value == target => true
case (Node(_, l, r), tail) => bfs(tail.enqueue(List(l, r)), target)
}
}
sealed trait Tree[+A]
case class Node[+A](data: A, left: Tree[A], right: Tree[A]) extends Tree[A]
case object E extends Tree[Nothing]
}
其他回答
我找不到一种完全递归的方法(没有任何辅助数据结构)。但是如果队列Q是通过引用传递的,那么你可以得到下面这个愚蠢的尾部递归函数:
BFS(Q)
{
if (|Q| > 0)
v <- Dequeue(Q)
Traverse(v)
foreach w in children(v)
Enqueue(Q, w)
BFS(Q)
}
设v为起始顶点
设G是问题中的图
下面是不使用队列的伪代码
Initially label v as visited as you start from v
BFS(G,v)
for all adjacent vertices w of v in G:
if vertex w is not visited:
label w as visited
for all adjacent vertices w of v in G:
recursively call BFS(G,w)
下面是一个BFS递归遍历Python实现,用于没有周期的图。
def bfs_recursive(level):
'''
@params level: List<Node> containing the node for a specific level.
'''
next_level = []
for node in level:
print(node.value)
for child_node in node.adjency_list:
next_level.append(child_node)
if len(next_level) != 0:
bfs_recursive(next_level)
class Node:
def __init__(self, value):
self.value = value
self.adjency_list = []
Here is a JavaScript Implementation that fakes Breadth First Traversal with Depth First recursion. I'm storing the node values at each depth inside an array, inside of a hash. If a level already exists(we have a collision), so we just push to the array at that level. You could use an array instead of a JavaScript object as well since our levels are numeric and can serve as array indices. You can return nodes, values, convert to a Linked List, or whatever you want. I'm just returning values for the sake of simplicity.
BinarySearchTree.prototype.breadthFirstRec = function() {
var levels = {};
var traverse = function(current, depth) {
if (!current) return null;
if (!levels[depth]) levels[depth] = [current.value];
else levels[depth].push(current.value);
traverse(current.left, depth + 1);
traverse(current.right, depth + 1);
};
traverse(this.root, 0);
return levels;
};
var bst = new BinarySearchTree();
bst.add(20, 22, 8, 4, 12, 10, 14, 24);
console.log('Recursive Breadth First: ', bst.breadthFirstRec());
/*Recursive Breadth First:
{ '0': [ 20 ],
'1': [ 8, 22 ],
'2': [ 4, 12, 24 ],
'3': [ 10, 14 ] } */
下面是一个使用迭代方法的实际广度优先遍历的示例。
BinarySearchTree.prototype.breadthFirst = function() {
var result = '',
queue = [],
current = this.root;
if (!current) return null;
queue.push(current);
while (current = queue.shift()) {
result += current.value + ' ';
current.left && queue.push(current.left);
current.right && queue.push(current.right);
}
return result;
};
console.log('Breadth First: ', bst.breadthFirst());
//Breadth First: 20 8 22 4 12 24 10 14
我想在上面的答案中加上我的观点,如果语言支持生成器之类的东西,bfs可以协递归地完成。
首先,@Tanzelax的回答是:
宽度优先遍历传统上使用队列,而不是堆栈。队列和堆栈的性质几乎是相反的,因此试图使用调用堆栈(因此得名为堆栈)作为辅助存储(队列)几乎是注定要失败的
实际上,普通函数调用的堆栈不会像普通堆栈那样运行。但是生成器函数将暂停函数的执行,因此它给了我们产生下一层节点的子节点的机会,而无需深入研究节点的更深层次的后代。
下面的代码是Python中的递归bfs。
def bfs(root):
yield root
for n in bfs(root):
for c in n.children:
yield c
这里的直觉是:
BFS首先将根作为第一个结果返回 假设我们已经有了BFS序列,BFS中的下一层元素是序列中前一个节点的直接子节点 重复以上两个步骤