假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
当前回答
#include <bits/stdc++.h>
using namespace std;
#define Max 1000
vector <int> adj[Max];
bool visited[Max];
void bfs_recursion_utils(queue<int>& Q) {
while(!Q.empty()) {
int u = Q.front();
visited[u] = true;
cout << u << endl;
Q.pop();
for(int i = 0; i < (int)adj[u].size(); ++i) {
int v = adj[u][i];
if(!visited[v])
Q.push(v), visited[v] = true;
}
bfs_recursion_utils(Q);
}
}
void bfs_recursion(int source, queue <int>& Q) {
memset(visited, false, sizeof visited);
Q.push(source);
bfs_recursion_utils(Q);
}
int main(void) {
queue <int> Q;
adj[1].push_back(2);
adj[1].push_back(3);
adj[1].push_back(4);
adj[2].push_back(5);
adj[2].push_back(6);
adj[3].push_back(7);
bfs_recursion(1, Q);
return 0;
}
其他回答
设v为起始顶点
设G是问题中的图
下面是不使用队列的伪代码
Initially label v as visited as you start from v
BFS(G,v)
for all adjacent vertices w of v in G:
if vertex w is not visited:
label w as visited
for all adjacent vertices w of v in G:
recursively call BFS(G,w)
下面使用Haskell对我来说似乎很自然。在树的各个层次上递归迭代(这里我将名字收集到一个大的有序字符串中,以显示树的路径):
data Node = Node {name :: String, children :: [Node]}
aTree = Node "r" [Node "c1" [Node "gc1" [Node "ggc1" []], Node "gc2" []] , Node "c2" [Node "gc3" []], Node "c3" [] ]
breadthFirstOrder x = levelRecurser [x]
where levelRecurser level = if length level == 0
then ""
else concat [name node ++ " " | node <- level] ++ levelRecurser (concat [children node | node <- level])
二进制(或n-ary)树的BFS可以在没有队列的情况下递归完成,如下所示(在Java中):
public class BreathFirst {
static class Node {
Node(int value) {
this(value, 0);
}
Node(int value, int nChildren) {
this.value = value;
this.children = new Node[nChildren];
}
int value;
Node[] children;
}
static void breathFirst(Node root, Consumer<? super Node> printer) {
boolean keepGoing = true;
for (int level = 0; keepGoing; level++) {
keepGoing = breathFirst(root, printer, level);
}
}
static boolean breathFirst(Node node, Consumer<? super Node> printer, int depth) {
if (depth < 0 || node == null) return false;
if (depth == 0) {
printer.accept(node);
return true;
}
boolean any = false;
for (final Node child : node.children) {
any |= breathFirst(child, printer, depth - 1);
}
return any;
}
}
按升序遍历打印数字1-12的示例:
public static void main(String... args) {
// 1
// / | \
// 2 3 4
// / | | \
// 5 6 7 8
// / | | \
// 9 10 11 12
Node root = new Node(1, 3);
root.children[0] = new Node(2, 2);
root.children[1] = new Node(3);
root.children[2] = new Node(4, 2);
root.children[0].children[0] = new Node(5, 2);
root.children[0].children[1] = new Node(6);
root.children[2].children[0] = new Node(7, 2);
root.children[2].children[1] = new Node(8);
root.children[0].children[0].children[0] = new Node(9);
root.children[0].children[0].children[1] = new Node(10);
root.children[2].children[0].children[0] = new Node(11);
root.children[2].children[0].children[1] = new Node(12);
breathFirst(root, n -> System.out.println(n.value));
}
Java中简单的BFS和DFS递归: 只需要在堆栈/队列中推送/提供树的根节点并调用这些函数。
public static void breadthFirstSearch(Queue queue) {
if (queue.isEmpty())
return;
Node node = (Node) queue.poll();
System.out.println(node + " ");
if (node.right != null)
queue.offer(node.right);
if (node.left != null)
queue.offer(node.left);
breadthFirstSearch(queue);
}
public static void depthFirstSearch(Stack stack) {
if (stack.isEmpty())
return;
Node node = (Node) stack.pop();
System.out.println(node + " ");
if (node.right != null)
stack.push(node.right);
if (node.left != null)
stack.push(node.left);
depthFirstSearch(stack);
}
下面的方法使用DFS算法来获取特定深度的所有节点——这与对该级别进行BFS相同。如果您找到树的深度,并对所有级别执行此操作,结果将与BFS相同。
public void PrintLevelNodes(Tree root, int level) {
if (root != null) {
if (level == 0) {
Console.Write(root.Data);
return;
}
PrintLevelNodes(root.Left, level - 1);
PrintLevelNodes(root.Right, level - 1);
}
}
for (int i = 0; i < depth; i++) {
PrintLevelNodes(root, i);
}
找到树的深度是小菜一碟:
public int MaxDepth(Tree root) {
if (root == null) {
return 0;
} else {
return Math.Max(MaxDepth(root.Left), MaxDepth(root.Right)) + 1;
}
}