我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
A Programmer's Companion to Algorithm Analysis给出了一个O(n)的版本,尽管作者指出常数因子如此之高,您可能更喜欢简单的排序-列表-然后选择方法。
我已经回答了你的问题:)
其他回答
下面是eladv建议的算法的实现(我也把随机pivot的实现放在这里):
public class Median {
public static void main(String[] s) {
int[] test = {4,18,20,3,7,13,5,8,2,1,15,17,25,30,16};
System.out.println(selectK(test,8));
/*
int n = 100000000;
int[] test = new int[n];
for(int i=0; i<test.length; i++)
test[i] = (int)(Math.random()*test.length);
long start = System.currentTimeMillis();
random_selectK(test, test.length/2);
long end = System.currentTimeMillis();
System.out.println(end - start);
*/
}
public static int random_selectK(int[] a, int k) {
if(a.length <= 1)
return a[0];
int r = (int)(Math.random() * a.length);
int p = a[r];
int small = 0, equal = 0, big = 0;
for(int i=0; i<a.length; i++) {
if(a[i] < p) small++;
else if(a[i] == p) equal++;
else if(a[i] > p) big++;
}
if(k <= small) {
int[] temp = new int[small];
for(int i=0, j=0; i<a.length; i++)
if(a[i] < p)
temp[j++] = a[i];
return random_selectK(temp, k);
}
else if (k <= small+equal)
return p;
else {
int[] temp = new int[big];
for(int i=0, j=0; i<a.length; i++)
if(a[i] > p)
temp[j++] = a[i];
return random_selectK(temp,k-small-equal);
}
}
public static int selectK(int[] a, int k) {
if(a.length <= 5) {
Arrays.sort(a);
return a[k-1];
}
int p = median_of_medians(a);
int small = 0, equal = 0, big = 0;
for(int i=0; i<a.length; i++) {
if(a[i] < p) small++;
else if(a[i] == p) equal++;
else if(a[i] > p) big++;
}
if(k <= small) {
int[] temp = new int[small];
for(int i=0, j=0; i<a.length; i++)
if(a[i] < p)
temp[j++] = a[i];
return selectK(temp, k);
}
else if (k <= small+equal)
return p;
else {
int[] temp = new int[big];
for(int i=0, j=0; i<a.length; i++)
if(a[i] > p)
temp[j++] = a[i];
return selectK(temp,k-small-equal);
}
}
private static int median_of_medians(int[] a) {
int[] b = new int[a.length/5];
int[] temp = new int[5];
for(int i=0; i<b.length; i++) {
for(int j=0; j<5; j++)
temp[j] = a[5*i + j];
Arrays.sort(temp);
b[i] = temp[2];
}
return selectK(b, b.length/2 + 1);
}
}
虽然不是很确定O(n)复杂度,但肯定在O(n)和nLog(n)之间。也肯定更接近于O(n)而不是nLog(n)函数是用Java编写的
public int quickSelect(ArrayList<Integer>list, int nthSmallest){
//Choose random number in range of 0 to array length
Random random = new Random();
//This will give random number which is not greater than length - 1
int pivotIndex = random.nextInt(list.size() - 1);
int pivot = list.get(pivotIndex);
ArrayList<Integer> smallerNumberList = new ArrayList<Integer>();
ArrayList<Integer> greaterNumberList = new ArrayList<Integer>();
//Split list into two.
//Value smaller than pivot should go to smallerNumberList
//Value greater than pivot should go to greaterNumberList
//Do nothing for value which is equal to pivot
for(int i=0; i<list.size(); i++){
if(list.get(i)<pivot){
smallerNumberList.add(list.get(i));
}
else if(list.get(i)>pivot){
greaterNumberList.add(list.get(i));
}
else{
//Do nothing
}
}
//If smallerNumberList size is greater than nthSmallest value, nthSmallest number must be in this list
if(nthSmallest < smallerNumberList.size()){
return quickSelect(smallerNumberList, nthSmallest);
}
//If nthSmallest is greater than [ list.size() - greaterNumberList.size() ], nthSmallest number must be in this list
//The step is bit tricky. If confusing, please see the above loop once again for clarification.
else if(nthSmallest > (list.size() - greaterNumberList.size())){
//nthSmallest will have to be changed here. [ list.size() - greaterNumberList.size() ] elements are already in
//smallerNumberList
nthSmallest = nthSmallest - (list.size() - greaterNumberList.size());
return quickSelect(greaterNumberList,nthSmallest);
}
else{
return pivot;
}
}
c++标准库几乎完全有这个函数调用nth_element,尽管它确实会修改数据。它有线性运行时间,O(N),它也做部分排序。
const int N = ...;
double a[N];
// ...
const int m = ...; // m < N
nth_element (a, a + m, a + N);
// a[m] contains the mth element in a
function nthMax(arr, nth = 1, maxNumber = Infinity) {
let large = -Infinity;
for(e of arr) {
if(e > large && e < maxNumber ) {
large = e;
} else if (maxNumber == large) {
nth++;
}
}
return nth==0 ? maxNumber: nthMax(arr, nth-1, large);
}
let array = [11,12,12,34,23,34];
let secondlargest = nthMax(array, 1);
console.log("Number:", secondlargest);
首先,我们可以从未排序的数组中构建一个BST,它需要O(n)时间,从BST中我们可以找到O(log(n))中第k个最小的元素,它的总计数为O(n)。