我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
A Programmer's Companion to Algorithm Analysis给出了一个O(n)的版本,尽管作者指出常数因子如此之高,您可能更喜欢简单的排序-列表-然后选择方法。
我已经回答了你的问题:)
其他回答
这是一个Javascript实现。
如果您释放了不能修改数组的约束,则可以使用两个索引来标识“当前分区”(经典快速排序样式- http://www.nczonline.net/blog/2012/11/27/computer-science-in-javascript-quicksort/)来防止使用额外的内存。
function kthMax(a, k){
var size = a.length;
var pivot = a[ parseInt(Math.random()*size) ]; //Another choice could have been (size / 2)
//Create an array with all element lower than the pivot and an array with all element higher than the pivot
var i, lowerArray = [], upperArray = [];
for (i = 0; i < size; i++){
var current = a[i];
if (current < pivot) {
lowerArray.push(current);
} else if (current > pivot) {
upperArray.push(current);
}
}
//Which one should I continue with?
if(k <= upperArray.length) {
//Upper
return kthMax(upperArray, k);
} else {
var newK = k - (size - lowerArray.length);
if (newK > 0) {
///Lower
return kthMax(lowerArray, newK);
} else {
//None ... it's the current pivot!
return pivot;
}
}
}
如果你想测试它的表现,你可以使用这个变量:
function kthMax (a, k, logging) {
var comparisonCount = 0; //Number of comparison that the algorithm uses
var memoryCount = 0; //Number of integers in memory that the algorithm uses
var _log = logging;
if(k < 0 || k >= a.length) {
if (_log) console.log ("k is out of range");
return false;
}
function _kthmax(a, k){
var size = a.length;
var pivot = a[parseInt(Math.random()*size)];
if(_log) console.log("Inputs:", a, "size="+size, "k="+k, "pivot="+pivot);
// This should never happen. Just a nice check in this exercise
// if you are playing with the code to avoid never ending recursion
if(typeof pivot === "undefined") {
if (_log) console.log ("Ops...");
return false;
}
var i, lowerArray = [], upperArray = [];
for (i = 0; i < size; i++){
var current = a[i];
if (current < pivot) {
comparisonCount += 1;
memoryCount++;
lowerArray.push(current);
} else if (current > pivot) {
comparisonCount += 2;
memoryCount++;
upperArray.push(current);
}
}
if(_log) console.log("Pivoting:",lowerArray, "*"+pivot+"*", upperArray);
if(k <= upperArray.length) {
comparisonCount += 1;
return _kthmax(upperArray, k);
} else if (k > size - lowerArray.length) {
comparisonCount += 2;
return _kthmax(lowerArray, k - (size - lowerArray.length));
} else {
comparisonCount += 2;
return pivot;
}
/*
* BTW, this is the logic for kthMin if we want to implement that... ;-)
*
if(k <= lowerArray.length) {
return kthMin(lowerArray, k);
} else if (k > size - upperArray.length) {
return kthMin(upperArray, k - (size - upperArray.length));
} else
return pivot;
*/
}
var result = _kthmax(a, k);
return {result: result, iterations: comparisonCount, memory: memoryCount};
}
剩下的代码只是创建一些游乐场:
function getRandomArray (n){
var ar = [];
for (var i = 0, l = n; i < l; i++) {
ar.push(Math.round(Math.random() * l))
}
return ar;
}
//Create a random array of 50 numbers
var ar = getRandomArray (50);
现在给你做几次测试。 因为Math.random()每次都会产生不同的结果:
kthMax(ar, 2, true);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 34, true);
kthMax(ar, 34);
kthMax(ar, 34);
kthMax(ar, 34);
kthMax(ar, 34);
kthMax(ar, 34);
如果你测试它几次,你甚至可以看到经验的迭代次数,平均来说,O(n) ~=常数* n, k的值不会影响算法。
你可以用O(n + kn) = O(n)(对于常数k)表示时间,用O(k)表示空间,通过跟踪你见过的最大的k个元素。
对于数组中的每个元素,您可以扫描k个最大的元素列表,并将最小的元素替换为更大的新元素。
Warren的优先级堆解决方案更简洁。
对于k非常小的值(即k << n),我们可以在~O(n)时间内完成。否则,如果k与n比较,我们得到O(nlogn)
还有Wirth的选择算法,它的实现比QuickSelect简单。Wirth的选择算法比QuickSelect慢,但经过一些改进,它变得更快。
更详细地说。使用Vladimir Zabrodsky的MODIFIND优化和3中位数的枢轴选择,并注意算法划分部分的最后步骤,我提出了以下算法(想象一下,命名为“LefSelect”):
#define F_SWAP(a,b) { float temp=(a);(a)=(b);(b)=temp; }
# Note: The code needs more than 2 elements to work
float lefselect(float a[], const int n, const int k) {
int l=0, m = n-1, i=l, j=m;
float x;
while (l<m) {
if( a[k] < a[i] ) F_SWAP(a[i],a[k]);
if( a[j] < a[i] ) F_SWAP(a[i],a[j]);
if( a[j] < a[k] ) F_SWAP(a[k],a[j]);
x=a[k];
while (j>k & i<k) {
do i++; while (a[i]<x);
do j--; while (a[j]>x);
F_SWAP(a[i],a[j]);
}
i++; j--;
if (j<k) {
while (a[i]<x) i++;
l=i; j=m;
}
if (k<i) {
while (x<a[j]) j--;
m=j; i=l;
}
}
return a[k];
}
在我这里做的基准测试中,LefSelect比QuickSelect快20-30%。
我提出了这个算法,似乎是O(n):
假设k=3我们想找出数组中第三大的元素。我将创建三个变量,并将数组中的每一项与这三个变量中的最小值进行比较。如果数组item大于最小值,则用item的值替换最小值变量。我们继续做同样的事情,直到数组结束。三个变量中的最小值是数组中第三大的项。
define variables a=0, b=0, c=0
iterate through the array items
find minimum a,b,c
if item > min then replace the min variable with item value
continue until end of array
the minimum of a,b,c is our answer
为了找到第K大的项,我们需要K个变量。
例如:(k = 3)
[1,2,4,1,7,3,9,5,6,2,9,8]
Final variable values:
a=7 (answer)
b=8
c=9
有人可以审查这个,让我知道我错过了什么?