我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

    function nthMax(arr, nth = 1, maxNumber = Infinity) {
      let large = -Infinity;
      for(e of arr) {
        if(e > large && e < maxNumber ) {
          large = e;
        } else if (maxNumber == large) {
          nth++;
        }
      }
      return nth==0 ? maxNumber: nthMax(arr, nth-1, large);
    }

    let array = [11,12,12,34,23,34];

    let secondlargest = nthMax(array, 1);

    console.log("Number:", secondlargest);

其他回答

A Programmer's Companion to Algorithm Analysis给出了一个O(n)的版本,尽管作者指出常数因子如此之高,您可能更喜欢简单的排序-列表-然后选择方法。

我已经回答了你的问题:)

c++标准库几乎完全有这个函数调用nth_element,尽管它确实会修改数据。它有线性运行时间,O(N),它也做部分排序。

const int N = ...;
double a[N];
// ... 
const int m = ...; // m < N
nth_element (a, a + m, a + N);
// a[m] contains the mth element in a

我想提出一个答案

如果我们取前k个元素并将它们排序成一个k个值的链表

对于每一个其他的值,即使在最坏的情况下如果我们对剩下的n-k个值进行插入排序即使在最坏的情况下,比较的数量也将是k*(n-k)对于前k个要排序的值让它是k*(k-1)所以结果是(nk-k)也就是o(n)

干杯

在那个('第k大元素数组')上快速谷歌返回这个:http://discuss.joelonsoftware.com/default.asp?interview.11.509587.17

"Make one pass through tracking the three largest values so far." 

(它是专门为3d最大)

这个答案是:

Build a heap/priority queue.  O(n)
Pop top element.  O(log n)
Pop top element.  O(log n)
Pop top element.  O(log n)

Total = O(n) + 3 O(log n) = O(n)

对于k非常小的值(即k << n),我们可以在~O(n)时间内完成。否则,如果k与n比较,我们得到O(nlogn)