我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

你可以在O(n)个时间和常数空间中找到第k个最小的元素。如果我们认为数组只用于整数。

方法是对数组值的范围进行二分搜索。如果min_value和max_value都在整数范围内,我们可以对该范围进行二分搜索。 我们可以写一个比较器函数,它会告诉我们是否有任何值是第k个最小值或小于第k个最小值或大于第k个最小值。 进行二分搜索,直到找到第k小的数

这是它的代码

类解决方案:

def _iskthsmallest(self, A, val, k):
    less_count, equal_count = 0, 0
    for i in range(len(A)):
        if A[i] == val: equal_count += 1
        if A[i] < val: less_count += 1

    if less_count >= k: return 1
    if less_count + equal_count < k: return -1
    return 0

def kthsmallest_binary(self, A, min_val, max_val, k):
    if min_val == max_val:
        return min_val
    mid = (min_val + max_val)/2
    iskthsmallest = self._iskthsmallest(A, mid, k)
    if iskthsmallest == 0: return mid
    if iskthsmallest > 0: return self.kthsmallest_binary(A, min_val, mid, k)
    return self.kthsmallest_binary(A, mid+1, max_val, k)

# @param A : tuple of integers
# @param B : integer
# @return an integer
def kthsmallest(self, A, k):
    if not A: return 0
    if k > len(A): return 0
    min_val, max_val = min(A), max(A)
    return self.kthsmallest_binary(A, min_val, max_val, k)

其他回答

还有Wirth的选择算法,它的实现比QuickSelect简单。Wirth的选择算法比QuickSelect慢,但经过一些改进,它变得更快。

更详细地说。使用Vladimir Zabrodsky的MODIFIND优化和3中位数的枢轴选择,并注意算法划分部分的最后步骤,我提出了以下算法(想象一下,命名为“LefSelect”):

#define F_SWAP(a,b) { float temp=(a);(a)=(b);(b)=temp; }

# Note: The code needs more than 2 elements to work
float lefselect(float a[], const int n, const int k) {
    int l=0, m = n-1, i=l, j=m;
    float x;

    while (l<m) {
        if( a[k] < a[i] ) F_SWAP(a[i],a[k]);
        if( a[j] < a[i] ) F_SWAP(a[i],a[j]);
        if( a[j] < a[k] ) F_SWAP(a[k],a[j]);

        x=a[k];
        while (j>k & i<k) {
            do i++; while (a[i]<x);
            do j--; while (a[j]>x);

            F_SWAP(a[i],a[j]);
        }
        i++; j--;

        if (j<k) {
            while (a[i]<x) i++;
            l=i; j=m;
        }
        if (k<i) {
            while (x<a[j]) j--;
            m=j; i=l;
        }
    }
    return a[k];
}

在我这里做的基准测试中,LefSelect比QuickSelect快20-30%。

它类似于快速排序策略,在快速排序策略中,我们选择一个任意的枢轴,并将较小的元素放在它的左边,将较大的元素放在右边

    public static int kthElInUnsortedList(List<int> list, int k)
    {
        if (list.Count == 1)
            return list[0];

        List<int> left = new List<int>();
        List<int> right = new List<int>();

        int pivotIndex = list.Count / 2;
        int pivot = list[pivotIndex]; //arbitrary

        for (int i = 0; i < list.Count && i != pivotIndex; i++)
        {
            int currentEl = list[i];
            if (currentEl < pivot)
                left.Add(currentEl);
            else
                right.Add(currentEl);
        }

        if (k == left.Count + 1)
            return pivot;

        if (left.Count < k)
            return kthElInUnsortedList(right, k - left.Count - 1);
        else
            return kthElInUnsortedList(left, k);
    }

下面是eladv建议的算法的实现(我也把随机pivot的实现放在这里):

public class Median {

    public static void main(String[] s) {

        int[] test = {4,18,20,3,7,13,5,8,2,1,15,17,25,30,16};
        System.out.println(selectK(test,8));

        /*
        int n = 100000000;
        int[] test = new int[n];
        for(int i=0; i<test.length; i++)
            test[i] = (int)(Math.random()*test.length);

        long start = System.currentTimeMillis();
        random_selectK(test, test.length/2);
        long end = System.currentTimeMillis();
        System.out.println(end - start);
        */
    }

    public static int random_selectK(int[] a, int k) {
        if(a.length <= 1)
            return a[0];

        int r = (int)(Math.random() * a.length);
        int p = a[r];

        int small = 0, equal = 0, big = 0;
        for(int i=0; i<a.length; i++) {
            if(a[i] < p) small++;
            else if(a[i] == p) equal++;
            else if(a[i] > p) big++;
        }

        if(k <= small) {
            int[] temp = new int[small];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] < p)
                    temp[j++] = a[i];
            return random_selectK(temp, k);
        }

        else if (k <= small+equal)
            return p;

        else {
            int[] temp = new int[big];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] > p)
                    temp[j++] = a[i];
            return random_selectK(temp,k-small-equal);
        }
    }

    public static int selectK(int[] a, int k) {
        if(a.length <= 5) {
            Arrays.sort(a);
            return a[k-1];
        }

        int p = median_of_medians(a);

        int small = 0, equal = 0, big = 0;
        for(int i=0; i<a.length; i++) {
            if(a[i] < p) small++;
            else if(a[i] == p) equal++;
            else if(a[i] > p) big++;
        }

        if(k <= small) {
            int[] temp = new int[small];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] < p)
                    temp[j++] = a[i];
            return selectK(temp, k);
        }

        else if (k <= small+equal)
            return p;

        else {
            int[] temp = new int[big];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] > p)
                    temp[j++] = a[i];
            return selectK(temp,k-small-equal);
        }
    }

    private static int median_of_medians(int[] a) {
        int[] b = new int[a.length/5];
        int[] temp = new int[5];
        for(int i=0; i<b.length; i++) {
            for(int j=0; j<5; j++)
                temp[j] = a[5*i + j];
            Arrays.sort(temp);
            b[i] = temp[2];
        }

        return selectK(b, b.length/2 + 1);
    }
}

A Programmer's Companion to Algorithm Analysis给出了一个O(n)的版本,尽管作者指出常数因子如此之高,您可能更喜欢简单的排序-列表-然后选择方法。

我已经回答了你的问题:)

我会这样做:

initialize empty doubly linked list l
for each element e in array
    if e larger than head(l)
        make e the new head of l
        if size(l) > k
            remove last element from l

the last element of l should now be the kth largest element

您可以简单地存储指向链表中第一个和最后一个元素的指针。它们只在更新列表时更改。

更新:

initialize empty sorted tree l
for each element e in array
    if e between head(l) and tail(l)
        insert e into l // O(log k)
        if size(l) > k
            remove last element from l

the last element of l should now be the kth largest element