我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

遍历列表。如果当前值大于存储的最大值,则将其存储为最大值,并将1-4向下碰撞,5从列表中删除。如果不是,将它与第2条进行比较,然后做同样的事情。重复,检查所有5个存储值。应该是O(n)

其他回答

它类似于快速排序策略,在快速排序策略中,我们选择一个任意的枢轴,并将较小的元素放在它的左边,将较大的元素放在右边

    public static int kthElInUnsortedList(List<int> list, int k)
    {
        if (list.Count == 1)
            return list[0];

        List<int> left = new List<int>();
        List<int> right = new List<int>();

        int pivotIndex = list.Count / 2;
        int pivot = list[pivotIndex]; //arbitrary

        for (int i = 0; i < list.Count && i != pivotIndex; i++)
        {
            int currentEl = list[i];
            if (currentEl < pivot)
                left.Add(currentEl);
            else
                right.Add(currentEl);
        }

        if (k == left.Count + 1)
            return pivot;

        if (left.Count < k)
            return kthElInUnsortedList(right, k - left.Count - 1);
        else
            return kthElInUnsortedList(left, k);
    }

A Programmer's Companion to Algorithm Analysis给出了一个O(n)的版本,尽管作者指出常数因子如此之高,您可能更喜欢简单的排序-列表-然后选择方法。

我已经回答了你的问题:)

首先,我们可以从未排序的数组中构建一个BST,它需要O(n)时间,从BST中我们可以找到O(log(n))中第k个最小的元素,它的总计数为O(n)。

这是一个Javascript实现。

如果您释放了不能修改数组的约束,则可以使用两个索引来标识“当前分区”(经典快速排序样式- http://www.nczonline.net/blog/2012/11/27/computer-science-in-javascript-quicksort/)来防止使用额外的内存。

function kthMax(a, k){
    var size = a.length;

    var pivot = a[ parseInt(Math.random()*size) ]; //Another choice could have been (size / 2) 

    //Create an array with all element lower than the pivot and an array with all element higher than the pivot
    var i, lowerArray = [], upperArray = [];
    for (i = 0; i  < size; i++){
        var current = a[i];

        if (current < pivot) {
            lowerArray.push(current);
        } else if (current > pivot) {
            upperArray.push(current);
        }
    }

    //Which one should I continue with?
    if(k <= upperArray.length) {
        //Upper
        return kthMax(upperArray, k);
    } else {
        var newK = k - (size - lowerArray.length);

        if (newK > 0) {
            ///Lower
            return kthMax(lowerArray, newK);
        } else {
            //None ... it's the current pivot!
            return pivot;
        }   
    }
}  

如果你想测试它的表现,你可以使用这个变量:

    function kthMax (a, k, logging) {
         var comparisonCount = 0; //Number of comparison that the algorithm uses
         var memoryCount = 0;     //Number of integers in memory that the algorithm uses
         var _log = logging;

         if(k < 0 || k >= a.length) {
            if (_log) console.log ("k is out of range"); 
            return false;
         }      

         function _kthmax(a, k){
             var size = a.length;
             var pivot = a[parseInt(Math.random()*size)];
             if(_log) console.log("Inputs:", a,  "size="+size, "k="+k, "pivot="+pivot);

             // This should never happen. Just a nice check in this exercise
             // if you are playing with the code to avoid never ending recursion            
             if(typeof pivot === "undefined") {
                 if (_log) console.log ("Ops..."); 
                 return false;
             }

             var i, lowerArray = [], upperArray = [];
             for (i = 0; i  < size; i++){
                 var current = a[i];
                 if (current < pivot) {
                     comparisonCount += 1;
                     memoryCount++;
                     lowerArray.push(current);
                 } else if (current > pivot) {
                     comparisonCount += 2;
                     memoryCount++;
                     upperArray.push(current);
                 }
             }
             if(_log) console.log("Pivoting:",lowerArray, "*"+pivot+"*", upperArray);

             if(k <= upperArray.length) {
                 comparisonCount += 1;
                 return _kthmax(upperArray, k);
             } else if (k > size - lowerArray.length) {
                 comparisonCount += 2;
                 return _kthmax(lowerArray, k - (size - lowerArray.length));
             } else {
                 comparisonCount += 2;
                 return pivot;
             }
     /* 
      * BTW, this is the logic for kthMin if we want to implement that... ;-)
      * 

             if(k <= lowerArray.length) {
                 return kthMin(lowerArray, k);
             } else if (k > size - upperArray.length) {
                 return kthMin(upperArray, k - (size - upperArray.length));
             } else 
                 return pivot;
     */            
         }

         var result = _kthmax(a, k);
         return {result: result, iterations: comparisonCount, memory: memoryCount};
     }

剩下的代码只是创建一些游乐场:

    function getRandomArray (n){
        var ar = [];
        for (var i = 0, l = n; i < l; i++) {
            ar.push(Math.round(Math.random() * l))
        }

        return ar;
    }

    //Create a random array of 50 numbers
    var ar = getRandomArray (50);   

现在给你做几次测试。 因为Math.random()每次都会产生不同的结果:

    kthMax(ar, 2, true);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 34, true);
    kthMax(ar, 34);
    kthMax(ar, 34);
    kthMax(ar, 34);
    kthMax(ar, 34);
    kthMax(ar, 34);

如果你测试它几次,你甚至可以看到经验的迭代次数,平均来说,O(n) ~=常数* n, k的值不会影响算法。

转到这个链接的结尾:...........

http://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/