我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
遍历列表。如果当前值大于存储的最大值,则将其存储为最大值,并将1-4向下碰撞,5从列表中删除。如果不是,将它与第2条进行比较,然后做同样的事情。重复,检查所有5个存储值。应该是O(n)
其他回答
它类似于快速排序策略,在快速排序策略中,我们选择一个任意的枢轴,并将较小的元素放在它的左边,将较大的元素放在右边
public static int kthElInUnsortedList(List<int> list, int k)
{
if (list.Count == 1)
return list[0];
List<int> left = new List<int>();
List<int> right = new List<int>();
int pivotIndex = list.Count / 2;
int pivot = list[pivotIndex]; //arbitrary
for (int i = 0; i < list.Count && i != pivotIndex; i++)
{
int currentEl = list[i];
if (currentEl < pivot)
left.Add(currentEl);
else
right.Add(currentEl);
}
if (k == left.Count + 1)
return pivot;
if (left.Count < k)
return kthElInUnsortedList(right, k - left.Count - 1);
else
return kthElInUnsortedList(left, k);
}
A Programmer's Companion to Algorithm Analysis给出了一个O(n)的版本,尽管作者指出常数因子如此之高,您可能更喜欢简单的排序-列表-然后选择方法。
我已经回答了你的问题:)
首先,我们可以从未排序的数组中构建一个BST,它需要O(n)时间,从BST中我们可以找到O(log(n))中第k个最小的元素,它的总计数为O(n)。
这是一个Javascript实现。
如果您释放了不能修改数组的约束,则可以使用两个索引来标识“当前分区”(经典快速排序样式- http://www.nczonline.net/blog/2012/11/27/computer-science-in-javascript-quicksort/)来防止使用额外的内存。
function kthMax(a, k){
var size = a.length;
var pivot = a[ parseInt(Math.random()*size) ]; //Another choice could have been (size / 2)
//Create an array with all element lower than the pivot and an array with all element higher than the pivot
var i, lowerArray = [], upperArray = [];
for (i = 0; i < size; i++){
var current = a[i];
if (current < pivot) {
lowerArray.push(current);
} else if (current > pivot) {
upperArray.push(current);
}
}
//Which one should I continue with?
if(k <= upperArray.length) {
//Upper
return kthMax(upperArray, k);
} else {
var newK = k - (size - lowerArray.length);
if (newK > 0) {
///Lower
return kthMax(lowerArray, newK);
} else {
//None ... it's the current pivot!
return pivot;
}
}
}
如果你想测试它的表现,你可以使用这个变量:
function kthMax (a, k, logging) {
var comparisonCount = 0; //Number of comparison that the algorithm uses
var memoryCount = 0; //Number of integers in memory that the algorithm uses
var _log = logging;
if(k < 0 || k >= a.length) {
if (_log) console.log ("k is out of range");
return false;
}
function _kthmax(a, k){
var size = a.length;
var pivot = a[parseInt(Math.random()*size)];
if(_log) console.log("Inputs:", a, "size="+size, "k="+k, "pivot="+pivot);
// This should never happen. Just a nice check in this exercise
// if you are playing with the code to avoid never ending recursion
if(typeof pivot === "undefined") {
if (_log) console.log ("Ops...");
return false;
}
var i, lowerArray = [], upperArray = [];
for (i = 0; i < size; i++){
var current = a[i];
if (current < pivot) {
comparisonCount += 1;
memoryCount++;
lowerArray.push(current);
} else if (current > pivot) {
comparisonCount += 2;
memoryCount++;
upperArray.push(current);
}
}
if(_log) console.log("Pivoting:",lowerArray, "*"+pivot+"*", upperArray);
if(k <= upperArray.length) {
comparisonCount += 1;
return _kthmax(upperArray, k);
} else if (k > size - lowerArray.length) {
comparisonCount += 2;
return _kthmax(lowerArray, k - (size - lowerArray.length));
} else {
comparisonCount += 2;
return pivot;
}
/*
* BTW, this is the logic for kthMin if we want to implement that... ;-)
*
if(k <= lowerArray.length) {
return kthMin(lowerArray, k);
} else if (k > size - upperArray.length) {
return kthMin(upperArray, k - (size - upperArray.length));
} else
return pivot;
*/
}
var result = _kthmax(a, k);
return {result: result, iterations: comparisonCount, memory: memoryCount};
}
剩下的代码只是创建一些游乐场:
function getRandomArray (n){
var ar = [];
for (var i = 0, l = n; i < l; i++) {
ar.push(Math.round(Math.random() * l))
}
return ar;
}
//Create a random array of 50 numbers
var ar = getRandomArray (50);
现在给你做几次测试。 因为Math.random()每次都会产生不同的结果:
kthMax(ar, 2, true);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 34, true);
kthMax(ar, 34);
kthMax(ar, 34);
kthMax(ar, 34);
kthMax(ar, 34);
kthMax(ar, 34);
如果你测试它几次,你甚至可以看到经验的迭代次数,平均来说,O(n) ~=常数* n, k的值不会影响算法。
转到这个链接的结尾:...........
http://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/
推荐文章
- 非递归深度优先搜索算法
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 使嵌套JavaScript对象平放/不平放的最快方法
- 大的Ө符号到底代表什么?
- 堆与二叉搜索树(BST)
- 加快R中的循环操作
- 给定一个数字数组,返回所有其他数字的乘积的数组(不除法)
- 广度优先Vs深度优先
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 分治算法与动态规划的区别
- 大概的成本访问各种缓存和主存储器?