如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

预检查一个完全封装矩形的圆是否与矩形发生碰撞。 检查圆内的矩形角。 对于每条边,看看是否有一条线与圆相交。将中心点C投影到直线AB上,得到点d。如果CD的长度小于半径,则发生了碰撞。

    projectionScalar=dot(AC,AB)/(mag(AC)*mag(AB));
    if(projectionScalar>=0 && projectionScalar<=1) {
        D=A+AB*projectionScalar;
        CD=D-C;
        if(mag(CD)<circle.radius){
            // there was a collision
        }
    }

其他回答

实际上,这要简单得多。你只需要两样东西。

首先,你需要找出从圆中心到矩形每条直线的四个正交距离。如果任意三个圆的半径大于矩形的半径,那么圆就不会与矩形相交。

其次,你需要找到圆中心和矩形中心之间的距离,那么你的圆不会在矩形内部如果距离大于矩形对角线长度的一半。

好运!

假设你有矩形的四条边,检查从这些边到圆心的距离,如果小于半径,那么这些形状是相交的。

if sqrt((rectangleRight.x - circleCenter.x)^2 +
        (rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleRight.x - circleCenter.x)^2 +
        (rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleLeft.x - circleCenter.x)^2 +
        (rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleLeft.x - circleCenter.x)^2 +
        (rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect

对于那些需要用SQL在地理坐标中计算圆/矩形碰撞的人, 这是我在oracle 11中实现的e.James建议算法。

在输入中,它需要圆坐标,圆半径km和矩形的两个顶点坐标:

CREATE OR REPLACE FUNCTION "DETECT_CIRC_RECT_COLLISION"
(
    circleCenterLat     IN NUMBER,      -- circle Center Latitude
    circleCenterLon     IN NUMBER,      -- circle Center Longitude
    circleRadius        IN NUMBER,      -- circle Radius in KM
    rectSWLat           IN NUMBER,      -- rectangle South West Latitude
    rectSWLon           IN NUMBER,      -- rectangle South West Longitude
    rectNELat           IN NUMBER,      -- rectangle North Est Latitude
    rectNELon           IN NUMBER       -- rectangle North Est Longitude
)
RETURN NUMBER
AS
    -- converts km to degrees (use 69 if miles)
    kmToDegreeConst     NUMBER := 111.045;

    -- Remaining rectangle vertices 
    rectNWLat   NUMBER;
    rectNWLon   NUMBER;
    rectSELat   NUMBER;
    rectSELon   NUMBER;

    rectHeight  NUMBER;
    rectWIdth   NUMBER;

    circleDistanceLat   NUMBER;
    circleDistanceLon   NUMBER;
    cornerDistanceSQ    NUMBER;

BEGIN
    -- Initialization of remaining rectangle vertices  
    rectNWLat := rectNELat;
    rectNWLon := rectSWLon;
    rectSELat := rectSWLat;
    rectSELon := rectNELon;

    -- Rectangle sides length calculation
    rectHeight := calc_distance(rectSWLat, rectSWLon, rectNWLat, rectNWLon);
    rectWidth := calc_distance(rectSWLat, rectSWLon, rectSELat, rectSELon);

    circleDistanceLat := abs( (circleCenterLat * kmToDegreeConst) - ((rectSWLat * kmToDegreeConst) + (rectHeight/2)) );
    circleDistanceLon := abs( (circleCenterLon * kmToDegreeConst) - ((rectSWLon * kmToDegreeConst) + (rectWidth/2)) );

    IF circleDistanceLon > ((rectWidth/2) + circleRadius) THEN
        RETURN -1;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLat > ((rectHeight/2) + circleRadius) THEN
        RETURN -1;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLon <= (rectWidth/2) THEN
        RETURN 0;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLat <= (rectHeight/2) THEN
        RETURN 0;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;


    cornerDistanceSQ := POWER(circleDistanceLon - (rectWidth/2), 2) + POWER(circleDistanceLat - (rectHeight/2), 2);

    IF cornerDistanceSQ <=  POWER(circleRadius, 2) THEN
        RETURN 0;  --  -1 => NO Collision ; 0 => Collision Detected
    ELSE
        RETURN -1;  --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    RETURN -1;  --  -1 => NO Collision ; 0 => Collision Detected
END;    

为了可视化,拿你的键盘的numpad。如果键“5”代表你的矩形,那么所有的键1-9代表空间的9个象限除以构成矩形的线(5是里面的线)。

1)如果圆的中心在象限5(即在矩形内),则两个形状相交。

这里有两种可能的情况: a)圆与矩形的两条或多条相邻边相交。 b)圆与矩形的一条边相交。

第一种情况很简单。如果圆与矩形的两条相邻边相交,则它必须包含连接这两条边的角。(或者说它的中心在象限5,我们已经讲过了。还要注意,圆只与矩形的两条相对边相交的情况也被覆盖了。)

2)如果矩形的任意角A、B、C、D在圆内,则这两个形状相交。

第二种情况比较棘手。我们应该注意到,只有当圆的中心位于2、4、6或8象限中的一个象限时,才会发生这种情况。(事实上,如果中心在1、3、7、8象限中的任何一个象限上,则相应的角将是离它最近的点。)

现在我们有了圆的中心在一个“边”象限内的情况,它只与相应的边相交。那么,边缘上最接近圆中心的点必须在圆内。

3)对于每条直线AB, BC, CD, DA,构造经过圆中心p的垂直线p(AB, p), p(BC, p), p(CD, p), p(DA, p),对于每条垂直线,如果与原边的交点在圆内,则两个图形相交。

最后一步有一个捷径。如果圆的圆心在象限8,边AB是上边,交点的y坐标是A和B, x坐标是P。

你可以构造四条线的交点并检查它们是否在相应的边上,或者找出P在哪个象限并检查相应的交点。两者都应该化简为相同的布尔方程。要注意的是,上面的步骤2并没有排除P位于“角落”象限之一;它只是在寻找一个十字路口。

编辑:事实证明,我忽略了一个简单的事实,即#2是#3的子情况。毕竟,角也是边缘上的点。请看下面@ShreevatsaR的回答,你会得到很好的解释。与此同时,忘记上面的第二条,除非你想要一个快速但冗余的检查。

这是最快的解决方案:

public static boolean intersect(Rectangle r, Circle c)
{
    float cx = Math.abs(c.x - r.x - r.halfWidth);
    float xDist = r.halfWidth + c.radius;
    if (cx > xDist)
        return false;
    float cy = Math.abs(c.y - r.y - r.halfHeight);
    float yDist = r.halfHeight + c.radius;
    if (cy > yDist)
        return false;
    if (cx <= r.halfWidth || cy <= r.halfHeight)
        return true;
    float xCornerDist = cx - r.halfWidth;
    float yCornerDist = cy - r.halfHeight;
    float xCornerDistSq = xCornerDist * xCornerDist;
    float yCornerDistSq = yCornerDist * yCornerDist;
    float maxCornerDistSq = c.radius * c.radius;
    return xCornerDistSq + yCornerDistSq <= maxCornerDistSq;
}

注意执行顺序,一半的宽度/高度是预先计算好的。此外,平方是“手动”完成的,以节省一些时钟周期。