如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

下面是修改后的代码100%工作:

public static bool IsIntersected(PointF circle, float radius, RectangleF rectangle)
{
    var rectangleCenter = new PointF((rectangle.X +  rectangle.Width / 2),
                                     (rectangle.Y + rectangle.Height / 2));

    var w = rectangle.Width  / 2;
    var h = rectangle.Height / 2;

    var dx = Math.Abs(circle.X - rectangleCenter.X);
    var dy = Math.Abs(circle.Y - rectangleCenter.Y);

    if (dx > (radius + w) || dy > (radius + h)) return false;

    var circleDistance = new PointF
                             {
                                 X = Math.Abs(circle.X - rectangle.X - w),
                                 Y = Math.Abs(circle.Y - rectangle.Y - h)
                             };

    if (circleDistance.X <= (w))
    {
        return true;
    }

    if (circleDistance.Y <= (h))
    {
        return true;
    }

    var cornerDistanceSq = Math.Pow(circleDistance.X - w, 2) + 
                                    Math.Pow(circleDistance.Y - h, 2);

    return (cornerDistanceSq <= (Math.Pow(radius, 2)));
}

Bassam Alugili

其他回答

圆与矩形相交只有两种情况:

圆的中心在矩形的内部,或者 矩形的一条边在圆上有一个点。

注意,这并不要求矩形与轴平行。

(一种方法是:如果没有一条边在圆中有点(如果所有的边都完全“在”圆外),那么圆仍然可以与多边形相交的唯一方法是它完全位于多边形内部。)

有了这样的见解,就可以像下面这样工作,其中圆的中心是P,半径是R,矩形的顶点是A, B, C, D(不完整的代码):

def intersect(Circle(P, R), Rectangle(A, B, C, D)):
    S = Circle(P, R)
    return (pointInRectangle(P, Rectangle(A, B, C, D)) or
            intersectCircle(S, (A, B)) or
            intersectCircle(S, (B, C)) or
            intersectCircle(S, (C, D)) or
            intersectCircle(S, (D, A)))

如果你在写任何几何,你的库中可能已经有了上面的函数。否则,pointInRectangle()可以用几种方式实现;任何一般的多边形点方法都可以工作,但对于矩形,你可以检查这是否有效:

0 ≤ AP·AB ≤ AB·AB and 0 ≤ AP·AD ≤ AD·AD

intersectCircle()也很容易实现:一种方法是检查从P到直线的垂线的脚是否足够近并且在端点之间,否则检查端点。

最酷的是,同样的想法不仅适用于矩形,而且适用于一个圆与任何简单多边形的交点——甚至不必是凸多边形!

对于那些需要用SQL在地理坐标中计算圆/矩形碰撞的人, 这是我在oracle 11中实现的e.James建议算法。

在输入中,它需要圆坐标,圆半径km和矩形的两个顶点坐标:

CREATE OR REPLACE FUNCTION "DETECT_CIRC_RECT_COLLISION"
(
    circleCenterLat     IN NUMBER,      -- circle Center Latitude
    circleCenterLon     IN NUMBER,      -- circle Center Longitude
    circleRadius        IN NUMBER,      -- circle Radius in KM
    rectSWLat           IN NUMBER,      -- rectangle South West Latitude
    rectSWLon           IN NUMBER,      -- rectangle South West Longitude
    rectNELat           IN NUMBER,      -- rectangle North Est Latitude
    rectNELon           IN NUMBER       -- rectangle North Est Longitude
)
RETURN NUMBER
AS
    -- converts km to degrees (use 69 if miles)
    kmToDegreeConst     NUMBER := 111.045;

    -- Remaining rectangle vertices 
    rectNWLat   NUMBER;
    rectNWLon   NUMBER;
    rectSELat   NUMBER;
    rectSELon   NUMBER;

    rectHeight  NUMBER;
    rectWIdth   NUMBER;

    circleDistanceLat   NUMBER;
    circleDistanceLon   NUMBER;
    cornerDistanceSQ    NUMBER;

BEGIN
    -- Initialization of remaining rectangle vertices  
    rectNWLat := rectNELat;
    rectNWLon := rectSWLon;
    rectSELat := rectSWLat;
    rectSELon := rectNELon;

    -- Rectangle sides length calculation
    rectHeight := calc_distance(rectSWLat, rectSWLon, rectNWLat, rectNWLon);
    rectWidth := calc_distance(rectSWLat, rectSWLon, rectSELat, rectSELon);

    circleDistanceLat := abs( (circleCenterLat * kmToDegreeConst) - ((rectSWLat * kmToDegreeConst) + (rectHeight/2)) );
    circleDistanceLon := abs( (circleCenterLon * kmToDegreeConst) - ((rectSWLon * kmToDegreeConst) + (rectWidth/2)) );

    IF circleDistanceLon > ((rectWidth/2) + circleRadius) THEN
        RETURN -1;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLat > ((rectHeight/2) + circleRadius) THEN
        RETURN -1;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLon <= (rectWidth/2) THEN
        RETURN 0;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLat <= (rectHeight/2) THEN
        RETURN 0;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;


    cornerDistanceSQ := POWER(circleDistanceLon - (rectWidth/2), 2) + POWER(circleDistanceLat - (rectHeight/2), 2);

    IF cornerDistanceSQ <=  POWER(circleRadius, 2) THEN
        RETURN 0;  --  -1 => NO Collision ; 0 => Collision Detected
    ELSE
        RETURN -1;  --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    RETURN -1;  --  -1 => NO Collision ; 0 => Collision Detected
END;    

稍微改进一下e。james的回答:

double dx = abs(circle.x - rect.x) - rect.w / 2,
       dy = abs(circle.y - rect.y) - rect.h / 2;

if (dx > circle.r || dy > circle.r) { return false; }
if (dx <= 0 || dy <= 0) { return true; }

return (dx * dx + dy * dy <= circle.r * circle.r);

这就减去了一次,而不是最多减去三次。

我在制作这款游戏时开发了这个算法:https://mshwf.github.io/mates/

如果圆与正方形接触,那么圆的中心线与正方形中心线之间的距离应该等于(直径+边)/2。 让我们有一个名为touching的变量来保存这个距离。问题是:我应该考虑哪条中心线:水平的还是垂直的? 考虑这个框架:

每条中心线给出了不同的距离,只有一条是没有碰撞的正确指示,但利用人类的直觉是理解自然算法如何工作的开始。

They are not touching, which means that the distance between the two centerlines should be greater than touching, which means that the natural algorithm picks the horizontal centerlines (the vertical centerlines says there's a collision!). By noticing multiple circles, you can tell: if the circle intersects with the vertical extension of the square, then we pick the vertical distance (between the horizontal centerlines), and if the circle intersects with the horizontal extension, we pick the horizontal distance:

另一个例子,圆4:它与正方形的水平延伸相交,那么我们考虑水平距离等于接触。

Ok, the tough part is demystified, now we know how the algorithm will work, but how we know with which extension the circle intersects? It's easy actually: we calculate the distance between the most right x and the most left x (of both the circle and the square), and the same for the y-axis, the one with greater value is the axis with the extension that intersects with the circle (if it's greater than diameter+side then the circle is outside the two square extensions, like circle #7). The code looks like:

right = Math.max(square.x+square.side, circle.x+circle.rad);
left = Math.min(square.x, circle.x-circle.rad);

bottom = Math.max(square.y+square.side, circle.y+circle.rad);
top = Math.min(square.y, circle.y-circle.rad);

if (right - left > down - top) {
 //compare with horizontal distance
}
else {
 //compare with vertical distance
}

/*These equations assume that the reference point of the square is at its top left corner, and the reference point of the circle is at its center*/

假设你有矩形的四条边,检查从这些边到圆心的距离,如果小于半径,那么这些形状是相交的。

if sqrt((rectangleRight.x - circleCenter.x)^2 +
        (rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleRight.x - circleCenter.x)^2 +
        (rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleLeft.x - circleCenter.x)^2 +
        (rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleLeft.x - circleCenter.x)^2 +
        (rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect