如何计算两个GPS坐标之间的距离(使用经纬度)?
当前回答
对于java
public static double degreesToRadians(double degrees) {
return degrees * Math.PI / 180;
}
public static double distanceInKmBetweenEarthCoordinates(Location location1, Location location2) {
double earthRadiusKm = 6371;
double dLat = degreesToRadians(location2.getLatitude()-location1.getLatitude());
double dLon = degreesToRadians(location2.getLongitude()-location1.getLongitude());
double lat1 = degreesToRadians(location1.getLatitude());
double lat2 = degreesToRadians(location2.getLatitude());
double a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadiusKm * c;
}
其他回答
如果你需要更准确的数据,可以看看这个。
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a) They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods such as great-circle distance which assume a spherical Earth. The first (direct) method computes the location of a point which is a given distance and azimuth (direction) from another point. The second (inverse) method computes the geographical distance and azimuth between two given points. They have been widely used in geodesy because they are accurate to within 0.5 mm (0.020″) on the Earth ellipsoid.
在我的项目中,我需要计算很多点之间的距离,所以我继续尝试优化我在这里找到的代码。平均而言,在不同的浏览器中,我的新实现的运行速度比获得最多好评的答案快2倍。
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
您可以在这里使用我的jsPerf并查看结果。
最近我需要在python中做同样的事情,所以这里是一个python实现:
from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
return 12742 * asin(sqrt(a))
为了完整起见:维基上的Haversine。
一、关于“面包屑”方法
地球半径在不同的纬度上是不同的。在Haversine算法中必须考虑到这一点。 考虑轴承的变化,它将直线变成拱门(更长的) 考虑到速度变化将把拱门变成螺旋(比拱门更长或更短) 高度变化将使平面螺旋变成3D螺旋(再次变长)。这对丘陵地区非常重要。
下面是考虑#1和#2的C语言函数:
double calcDistanceByHaversine(double rLat1, double rLon1, double rHeading1,
double rLat2, double rLon2, double rHeading2){
double rDLatRad = 0.0;
double rDLonRad = 0.0;
double rLat1Rad = 0.0;
double rLat2Rad = 0.0;
double a = 0.0;
double c = 0.0;
double rResult = 0.0;
double rEarthRadius = 0.0;
double rDHeading = 0.0;
double rDHeadingRad = 0.0;
if ((rLat1 < -90.0) || (rLat1 > 90.0) || (rLat2 < -90.0) || (rLat2 > 90.0)
|| (rLon1 < -180.0) || (rLon1 > 180.0) || (rLon2 < -180.0)
|| (rLon2 > 180.0)) {
return -1;
};
rDLatRad = (rLat2 - rLat1) * DEGREE_TO_RADIANS;
rDLonRad = (rLon2 - rLon1) * DEGREE_TO_RADIANS;
rLat1Rad = rLat1 * DEGREE_TO_RADIANS;
rLat2Rad = rLat2 * DEGREE_TO_RADIANS;
a = sin(rDLatRad / 2) * sin(rDLatRad / 2) + sin(rDLonRad / 2) * sin(
rDLonRad / 2) * cos(rLat1Rad) * cos(rLat2Rad);
if (a == 0.0) {
return 0.0;
}
c = 2 * atan2(sqrt(a), sqrt(1 - a));
rEarthRadius = 6378.1370 - (21.3847 * 90.0 / ((fabs(rLat1) + fabs(rLat2))
/ 2.0));
rResult = rEarthRadius * c;
// Chord to Arc Correction based on Heading changes. Important for routes with many turns and U-turns
if ((rHeading1 >= 0.0) && (rHeading1 < 360.0) && (rHeading2 >= 0.0)
&& (rHeading2 < 360.0)) {
rDHeading = fabs(rHeading1 - rHeading2);
if (rDHeading > 180.0) {
rDHeading -= 180.0;
}
rDHeadingRad = rDHeading * DEGREE_TO_RADIANS;
if (rDHeading > 5.0) {
rResult = rResult * (rDHeadingRad / (2.0 * sin(rDHeadingRad / 2)));
} else {
rResult = rResult / cos(rDHeadingRad);
}
}
return rResult;
}
2有一种更简单的方法,效果很好。
按平均速度。
Trip_distance = Trip_average_speed * Trip_time
由于GPS速度是由多普勒效应检测的,与[Lon,Lat]没有直接关系,如果不是主要的距离计算方法,至少可以考虑作为次要的(备份或校正)。
下面是Kotlin的一个变种:
import kotlin.math.*
class HaversineAlgorithm {
companion object {
private const val MEAN_EARTH_RADIUS = 6371.008
private const val D2R = Math.PI / 180.0
}
private fun haversineInKm(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double {
val lonDiff = (lon2 - lon1) * D2R
val latDiff = (lat2 - lat1) * D2R
val latSin = sin(latDiff / 2.0)
val lonSin = sin(lonDiff / 2.0)
val a = latSin * latSin + (cos(lat1 * D2R) * cos(lat2 * D2R) * lonSin * lonSin)
val c = 2.0 * atan2(sqrt(a), sqrt(1.0 - a))
return MEAN_EARTH_RADIUS * c
}
}
PHP版本:
(删除所有deg2rad()如果您的坐标已经是弧度。)
$R = 6371; // km
$dLat = deg2rad($lat2-$lat1);
$dLon = deg2rad($lon2-$lon1);
$lat1 = deg2rad($lat1);
$lat2 = deg2rad($lat2);
$a = sin($dLat/2) * sin($dLat/2) +
sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2);
$c = 2 * atan2(sqrt($a), sqrt(1-$a));
$d = $R * $c;