在Python中对正则表达式使用compile有什么好处吗?
h = re.compile('hello')
h.match('hello world')
vs
re.match('hello', 'hello world')
在Python中对正则表达式使用compile有什么好处吗?
h = re.compile('hello')
h.match('hello world')
vs
re.match('hello', 'hello world')
当前回答
一般来说,我发现在编译模式时使用标志比内联使用标志更容易(至少更容易记住如何使用),比如re.I。
>>> foo_pat = re.compile('foo',re.I)
>>> foo_pat.findall('some string FoO bar')
['FoO']
vs
>>> re.findall('(?i)foo','some string FoO bar')
['FoO']
其他回答
在无意中看到这里的讨论之前,我运行了这个测试。然而,在运行它之后,我想我至少会发布我的结果。
我剽窃了Jeff Friedl的“精通正则表达式”中的例子。这是在一台运行OSX 10.6 (2Ghz英特尔酷睿2双核,4GB内存)的macbook上。Python版本为2.6.1。
运行1 -使用re.compile
import re
import time
import fpformat
Regex1 = re.compile('^(a|b|c|d|e|f|g)+$')
Regex2 = re.compile('^[a-g]+$')
TimesToDo = 1000
TestString = ""
for i in range(1000):
TestString += "abababdedfg"
StartTime = time.time()
for i in range(TimesToDo):
Regex1.search(TestString)
Seconds = time.time() - StartTime
print "Alternation takes " + fpformat.fix(Seconds,3) + " seconds"
StartTime = time.time()
for i in range(TimesToDo):
Regex2.search(TestString)
Seconds = time.time() - StartTime
print "Character Class takes " + fpformat.fix(Seconds,3) + " seconds"
Alternation takes 2.299 seconds
Character Class takes 0.107 seconds
运行2 -不使用re.compile
import re
import time
import fpformat
TimesToDo = 1000
TestString = ""
for i in range(1000):
TestString += "abababdedfg"
StartTime = time.time()
for i in range(TimesToDo):
re.search('^(a|b|c|d|e|f|g)+$',TestString)
Seconds = time.time() - StartTime
print "Alternation takes " + fpformat.fix(Seconds,3) + " seconds"
StartTime = time.time()
for i in range(TimesToDo):
re.search('^[a-g]+$',TestString)
Seconds = time.time() - StartTime
print "Character Class takes " + fpformat.fix(Seconds,3) + " seconds"
Alternation takes 2.508 seconds
Character Class takes 0.109 seconds
我有很多运行一个编译过的正则表达式和实时编译的经验,并没有注意到任何可感知的差异。显然,这只是传闻,当然也不是反对编译的有力论据,但我发现两者之间的差异可以忽略不计。
编辑: 在快速浏览了实际的Python 2.5库代码后,我发现无论何时使用正则表达式(包括调用re.match()), Python都会在内部编译和缓存正则表达式,因此实际上只在正则表达式被编译时进行更改,并且不应该节省太多时间——只节省检查缓存所需的时间(对内部dict类型的键查找)。
来自re.py模块(评论是我的):
def match(pattern, string, flags=0):
return _compile(pattern, flags).match(string)
def _compile(*key):
# Does cache check at top of function
cachekey = (type(key[0]),) + key
p = _cache.get(cachekey)
if p is not None: return p
# ...
# Does actual compilation on cache miss
# ...
# Caches compiled regex
if len(_cache) >= _MAXCACHE:
_cache.clear()
_cache[cachekey] = p
return p
我仍然经常预编译正则表达式,但只是为了将它们绑定到一个漂亮的、可重用的名称,而不是为了任何预期的性能提升。
FWIW:
$ python -m timeit -s "import re" "re.match('hello', 'hello world')"
100000 loops, best of 3: 3.82 usec per loop
$ python -m timeit -s "import re; h=re.compile('hello')" "h.match('hello world')"
1000000 loops, best of 3: 1.26 usec per loop
因此,如果您将经常使用同一个正则表达式,可能值得执行re.compile(特别是对于更复杂的正则表达式)。
反对过早优化的标准论点适用,但如果您怀疑regexp可能成为性能瓶颈,我不认为使用re.compile会真正失去多少清晰度/直接性。
更新:
在Python 3.6(我怀疑上述计时是使用Python 2.x完成的)和2018硬件(MacBook Pro)下,我现在得到以下计时:
% python -m timeit -s "import re" "re.match('hello', 'hello world')"
1000000 loops, best of 3: 0.661 usec per loop
% python -m timeit -s "import re; h=re.compile('hello')" "h.match('hello world')"
1000000 loops, best of 3: 0.285 usec per loop
% python -m timeit -s "import re" "h=re.compile('hello'); h.match('hello world')"
1000000 loops, best of 3: 0.65 usec per loop
% python --version
Python 3.6.5 :: Anaconda, Inc.
我还添加了一个案例(注意最后两次运行之间的引号差异),表明re.match(x,…)从字面上[大致]等价于re.compile(x).match(…),即似乎没有发生编译表示的幕后缓存。
我有很多运行编译过的regex 1000的经验 与实时编译相比,并没有注意到 任何可感知的差异
对已接受答案的投票导致假设@Triptych所说的对所有情况都是正确的。这并不一定是真的。一个很大的区别是当你必须决定是接受一个正则表达式字符串还是一个编译过的正则表达式对象作为函数的参数时:
>>> timeit.timeit(setup="""
... import re
... f=lambda x, y: x.match(y) # accepts compiled regex as parameter
... h=re.compile('hello')
... """, stmt="f(h, 'hello world')")
0.32881879806518555
>>> timeit.timeit(setup="""
... import re
... f=lambda x, y: re.compile(x).match(y) # compiles when called
... """, stmt="f('hello', 'hello world')")
0.809190034866333
编译正则表达式总是更好的,以防需要重用它们。
请注意,上面timeit中的示例模拟在导入时一次创建已编译的regex对象,而不是在需要匹配时“动态”创建。
大多数情况下,是否使用re.compile没有什么区别。在内部,所有函数都是按照编译步骤实现的:
def match(pattern, string, flags=0):
return _compile(pattern, flags).match(string)
def fullmatch(pattern, string, flags=0):
return _compile(pattern, flags).fullmatch(string)
def search(pattern, string, flags=0):
return _compile(pattern, flags).search(string)
def sub(pattern, repl, string, count=0, flags=0):
return _compile(pattern, flags).sub(repl, string, count)
def subn(pattern, repl, string, count=0, flags=0):
return _compile(pattern, flags).subn(repl, string, count)
def split(pattern, string, maxsplit=0, flags=0):
return _compile(pattern, flags).split(string, maxsplit)
def findall(pattern, string, flags=0):
return _compile(pattern, flags).findall(string)
def finditer(pattern, string, flags=0):
return _compile(pattern, flags).finditer(string)
此外,re.compile()绕过了额外的间接和缓存逻辑:
_cache = {}
_pattern_type = type(sre_compile.compile("", 0))
_MAXCACHE = 512
def _compile(pattern, flags):
# internal: compile pattern
try:
p, loc = _cache[type(pattern), pattern, flags]
if loc is None or loc == _locale.setlocale(_locale.LC_CTYPE):
return p
except KeyError:
pass
if isinstance(pattern, _pattern_type):
if flags:
raise ValueError(
"cannot process flags argument with a compiled pattern")
return pattern
if not sre_compile.isstring(pattern):
raise TypeError("first argument must be string or compiled pattern")
p = sre_compile.compile(pattern, flags)
if not (flags & DEBUG):
if len(_cache) >= _MAXCACHE:
_cache.clear()
if p.flags & LOCALE:
if not _locale:
return p
loc = _locale.setlocale(_locale.LC_CTYPE)
else:
loc = None
_cache[type(pattern), pattern, flags] = p, loc
return p
除了使用re.compile带来的小速度好处外,人们还喜欢命名潜在复杂的模式规范并将其与应用的业务逻辑分离所带来的可读性:
#### Patterns ############################################################
number_pattern = re.compile(r'\d+(\.\d*)?') # Integer or decimal number
assign_pattern = re.compile(r':=') # Assignment operator
identifier_pattern = re.compile(r'[A-Za-z]+') # Identifiers
whitespace_pattern = re.compile(r'[\t ]+') # Spaces and tabs
#### Applications ########################################################
if whitespace_pattern.match(s): business_logic_rule_1()
if assign_pattern.match(s): business_logic_rule_2()
注意,另一位受访者错误地认为pyc文件直接存储已编译的模式;然而,在现实中,每次PYC加载时,它们都会被重新构建:
>>> from dis import dis
>>> with open('tmp.pyc', 'rb') as f:
f.read(8)
dis(marshal.load(f))
1 0 LOAD_CONST 0 (-1)
3 LOAD_CONST 1 (None)
6 IMPORT_NAME 0 (re)
9 STORE_NAME 0 (re)
3 12 LOAD_NAME 0 (re)
15 LOAD_ATTR 1 (compile)
18 LOAD_CONST 2 ('[aeiou]{2,5}')
21 CALL_FUNCTION 1
24 STORE_NAME 2 (lc_vowels)
27 LOAD_CONST 1 (None)
30 RETURN_VALUE
上面的分解来自于一个包含tmp.py的PYC文件:
import re
lc_vowels = re.compile(r'[aeiou]{2,5}')