在Python中对正则表达式使用compile有什么好处吗?
h = re.compile('hello')
h.match('hello world')
vs
re.match('hello', 'hello world')
在Python中对正则表达式使用compile有什么好处吗?
h = re.compile('hello')
h.match('hello world')
vs
re.match('hello', 'hello world')
当前回答
我想说的是,预编译在概念上和“字面上”(如在“文学编程”中)都是有利的。看看这段代码片段:
from re import compile as _Re
class TYPO:
def text_has_foobar( self, text ):
return self._text_has_foobar_re_search( text ) is not None
_text_has_foobar_re_search = _Re( r"""(?i)foobar""" ).search
TYPO = TYPO()
在你的应用程序中,你可以这样写:
from TYPO import TYPO
print( TYPO.text_has_foobar( 'FOObar ) )
this is about as simple in terms of functionality as it can get. because this is example is so short, i conflated the way to get _text_has_foobar_re_search all in one line. the disadvantage of this code is that it occupies a little memory for whatever the lifetime of the TYPO library object is; the advantage is that when doing a foobar search, you'll get away with two function calls and two class dictionary lookups. how many regexes are cached by re and the overhead of that cache are irrelevant here.
将其与更常见的风格进行比较,如下所示:
import re
class Typo:
def text_has_foobar( self, text ):
return re.compile( r"""(?i)foobar""" ).search( text ) is not None
在应用中:
typo = Typo()
print( typo.text_has_foobar( 'FOObar ) )
我很乐意承认我的风格在python中是非常不寻常的,甚至可能是有争议的。然而,在更接近python的使用方式的示例中,为了进行一次匹配,我们必须实例化一个对象,进行三次实例字典查找,并执行三次函数调用;此外,当使用超过100个正则表达式时,我们可能会遇到重新缓存的麻烦。此外,正则表达式被隐藏在方法体中,这在大多数情况下并不是一个好主意。
可以说,每一个措施的子集——有针对性的,别名的import语句;别名方法(如适用);减少函数调用和对象字典查找——可以帮助减少计算和概念的复杂性。
其他回答
这个答案可能姗姗来迟,但却是一个有趣的发现。如果你打算多次使用regex,使用compile真的可以节省你的时间(这在文档中也有提到)。下面你可以看到,当直接调用match方法时,使用编译后的正则表达式是最快的。将一个编译好的正则表达式传递给re.match会使它更慢,而将re.match与patter字符串传递在中间的某个地方。
>>> ipr = r'\D+((([0-2][0-5]?[0-5]?)\.){3}([0-2][0-5]?[0-5]?))\D+'
>>> average(*timeit.repeat("re.match(ipr, 'abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
1.5077415757028423
>>> ipr = re.compile(ipr)
>>> average(*timeit.repeat("re.match(ipr, 'abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
1.8324008992184038
>>> average(*timeit.repeat("ipr.match('abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
0.9187896518778871
下面是一个使用re.compile的示例,在请求时速度超过50倍。
这一点与我在上面的评论中所说的是一样的,即当您的使用从编译缓存中获益不多时,使用re.compile可能是一个显著的优势。这种情况至少发生在一个特定的情况下(我在实践中遇到过),即当以下所有情况都成立时:
您有很多regex模式(不仅仅是re._MAXCACHE,它目前的默认值是512),以及 你经常使用这些正则表达式,而且 相同模式的连续使用之间被多个re._MAXCACHE其他正则表达式分隔,因此每个正则表达式在连续使用之间从缓存中刷新。
import re
import time
def setup(N=1000):
# Patterns 'a.*a', 'a.*b', ..., 'z.*z'
patterns = [chr(i) + '.*' + chr(j)
for i in range(ord('a'), ord('z') + 1)
for j in range(ord('a'), ord('z') + 1)]
# If this assertion below fails, just add more (distinct) patterns.
# assert(re._MAXCACHE < len(patterns))
# N strings. Increase N for larger effect.
strings = ['abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz'] * N
return (patterns, strings)
def without_compile():
print('Without re.compile:')
patterns, strings = setup()
print('searching')
count = 0
for s in strings:
for pat in patterns:
count += bool(re.search(pat, s))
return count
def without_compile_cache_friendly():
print('Without re.compile, cache-friendly order:')
patterns, strings = setup()
print('searching')
count = 0
for pat in patterns:
for s in strings:
count += bool(re.search(pat, s))
return count
def with_compile():
print('With re.compile:')
patterns, strings = setup()
print('compiling')
compiled = [re.compile(pattern) for pattern in patterns]
print('searching')
count = 0
for s in strings:
for regex in compiled:
count += bool(regex.search(s))
return count
start = time.time()
print(with_compile())
d1 = time.time() - start
print(f'-- That took {d1:.2f} seconds.\n')
start = time.time()
print(without_compile_cache_friendly())
d2 = time.time() - start
print(f'-- That took {d2:.2f} seconds.\n')
start = time.time()
print(without_compile())
d3 = time.time() - start
print(f'-- That took {d3:.2f} seconds.\n')
print(f'Ratio: {d3/d1:.2f}')
我在笔记本电脑上获得的示例输出(Python 3.7.7):
With re.compile:
compiling
searching
676000
-- That took 0.33 seconds.
Without re.compile, cache-friendly order:
searching
676000
-- That took 0.67 seconds.
Without re.compile:
searching
676000
-- That took 23.54 seconds.
Ratio: 70.89
I didn't bother with timeit as the difference is so stark, but I get qualitatively similar numbers each time. Note that even without re.compile, using the same regex multiple times and moving on to the next one wasn't so bad (only about 2 times as slow as with re.compile), but in the other order (looping through many regexes), it is significantly worse, as expected. Also, increasing the cache size works too: simply setting re._MAXCACHE = len(patterns) in setup() above (of course I don't recommend doing such things in production as names with underscores are conventionally “private”) drops the ~23 seconds back down to ~0.7 seconds, which also matches our understanding.
我的理解是,这两个例子实际上是等价的。唯一的区别是,在第一种情况下,您可以在其他地方重用已编译的正则表达式,而不会导致再次编译它。
这里有一个参考:http://diveintopython3.ep.io/refactoring.html
使用字符串'M'调用已编译模式对象的搜索函数,其效果与同时使用正则表达式和字符串'M'调用re.search相同。只是要快得多。(事实上,re.search函数只是编译正则表达式,并为您调用结果模式对象的搜索方法。)
易读性/认知负荷偏好
对我来说,主要的收获是我只需要记住和阅读复杂的正则表达式API语法的一种形式——<compiled_pattern>.method(xxx)形式而不是那个和re.func(<pattern>, xxx)形式。
re.compile(<pattern>)是一个额外的样板文件,true。
但是考虑到正则表达式,额外的编译步骤不太可能是认知负荷的主要原因。事实上,对于复杂的模式,您甚至可以通过将声明与随后对其调用的任何regex方法分开来获得清晰性。
我倾向于首先在Regex101这样的网站中调优复杂的模式,甚至在单独的最小测试脚本中调优,然后将它们带入我的代码中,因此将声明与其使用分离也适合我的工作流程。
我有很多运行编译过的regex 1000的经验 与实时编译相比,并没有注意到 任何可感知的差异
对已接受答案的投票导致假设@Triptych所说的对所有情况都是正确的。这并不一定是真的。一个很大的区别是当你必须决定是接受一个正则表达式字符串还是一个编译过的正则表达式对象作为函数的参数时:
>>> timeit.timeit(setup="""
... import re
... f=lambda x, y: x.match(y) # accepts compiled regex as parameter
... h=re.compile('hello')
... """, stmt="f(h, 'hello world')")
0.32881879806518555
>>> timeit.timeit(setup="""
... import re
... f=lambda x, y: re.compile(x).match(y) # compiles when called
... """, stmt="f('hello', 'hello world')")
0.809190034866333
编译正则表达式总是更好的,以防需要重用它们。
请注意,上面timeit中的示例模拟在导入时一次创建已编译的regex对象,而不是在需要匹配时“动态”创建。