在Python中对正则表达式使用compile有什么好处吗?

h = re.compile('hello')
h.match('hello world')

vs

re.match('hello', 'hello world')

当前回答

我有很多运行一个编译过的正则表达式和实时编译的经验,并没有注意到任何可感知的差异。显然,这只是传闻,当然也不是反对编译的有力论据,但我发现两者之间的差异可以忽略不计。

编辑: 在快速浏览了实际的Python 2.5库代码后,我发现无论何时使用正则表达式(包括调用re.match()), Python都会在内部编译和缓存正则表达式,因此实际上只在正则表达式被编译时进行更改,并且不应该节省太多时间——只节省检查缓存所需的时间(对内部dict类型的键查找)。

来自re.py模块(评论是我的):

def match(pattern, string, flags=0):
    return _compile(pattern, flags).match(string)

def _compile(*key):

    # Does cache check at top of function
    cachekey = (type(key[0]),) + key
    p = _cache.get(cachekey)
    if p is not None: return p

    # ...
    # Does actual compilation on cache miss
    # ...

    # Caches compiled regex
    if len(_cache) >= _MAXCACHE:
        _cache.clear()
    _cache[cachekey] = p
    return p

我仍然经常预编译正则表达式,但只是为了将它们绑定到一个漂亮的、可重用的名称,而不是为了任何预期的性能提升。

其他回答

使用re.compile()还有一个额外的好处,即使用re.VERBOSE向正则表达式模式添加注释

pattern = '''
hello[ ]world    # Some info on my pattern logic. [ ] to recognize space
'''

re.search(pattern, 'hello world', re.VERBOSE)

虽然这不会影响代码的运行速度,但我喜欢这样做,因为这是我注释习惯的一部分。当我想要修改代码时,我完全不喜欢花时间去记住代码背后的逻辑。

下面是一个简单的测试用例:

~$ for x in 1 10 100 1000 10000 100000 1000000; do python -m timeit -n $x -s 'import re' 're.match("[0-9]{3}-[0-9]{3}-[0-9]{4}", "123-123-1234")'; done
1 loops, best of 3: 3.1 usec per loop
10 loops, best of 3: 2.41 usec per loop
100 loops, best of 3: 2.24 usec per loop
1000 loops, best of 3: 2.21 usec per loop
10000 loops, best of 3: 2.23 usec per loop
100000 loops, best of 3: 2.24 usec per loop
1000000 loops, best of 3: 2.31 usec per loop

re.compile:

~$ for x in 1 10 100 1000 10000 100000 1000000; do python -m timeit -n $x -s 'import re' 'r = re.compile("[0-9]{3}-[0-9]{3}-[0-9]{4}")' 'r.match("123-123-1234")'; done
1 loops, best of 3: 1.91 usec per loop
10 loops, best of 3: 0.691 usec per loop
100 loops, best of 3: 0.701 usec per loop
1000 loops, best of 3: 0.684 usec per loop
10000 loops, best of 3: 0.682 usec per loop
100000 loops, best of 3: 0.694 usec per loop
1000000 loops, best of 3: 0.702 usec per loop

因此,这种简单的情况下编译似乎更快,即使只匹配一次。

尽管这两种方法在速度方面是可以比较的,但是您应该知道,如果您正在处理数百万次迭代,那么仍然存在一些可以忽略不计的时间差。

以下速度测试:

import re
import time

SIZE = 100_000_000

start = time.time()
foo = re.compile('foo')
[foo.search('bar') for _ in range(SIZE)]
print('compiled:  ', time.time() - start)

start = time.time()
[re.search('foo', 'bar') for _ in range(SIZE)]
print('uncompiled:', time.time() - start)

给出了以下结果:

compiled:   14.647532224655151
uncompiled: 61.483458042144775

编译后的方法在我的PC上(使用Python 3.7.0)始终快大约4倍。

如文档中所述:

如果在循环中访问正则表达式,预编译它将节省一些函数调用。在循环之外,由于内部缓存,没有太大区别。

大多数情况下,是否使用re.compile没有什么区别。在内部,所有函数都是按照编译步骤实现的:

def match(pattern, string, flags=0):
    return _compile(pattern, flags).match(string)

def fullmatch(pattern, string, flags=0):
    return _compile(pattern, flags).fullmatch(string)

def search(pattern, string, flags=0):
    return _compile(pattern, flags).search(string)

def sub(pattern, repl, string, count=0, flags=0):
    return _compile(pattern, flags).sub(repl, string, count)

def subn(pattern, repl, string, count=0, flags=0):
    return _compile(pattern, flags).subn(repl, string, count)

def split(pattern, string, maxsplit=0, flags=0):
    return _compile(pattern, flags).split(string, maxsplit)

def findall(pattern, string, flags=0):
    return _compile(pattern, flags).findall(string)

def finditer(pattern, string, flags=0):
    return _compile(pattern, flags).finditer(string)

此外,re.compile()绕过了额外的间接和缓存逻辑:

_cache = {}

_pattern_type = type(sre_compile.compile("", 0))

_MAXCACHE = 512
def _compile(pattern, flags):
    # internal: compile pattern
    try:
        p, loc = _cache[type(pattern), pattern, flags]
        if loc is None or loc == _locale.setlocale(_locale.LC_CTYPE):
            return p
    except KeyError:
        pass
    if isinstance(pattern, _pattern_type):
        if flags:
            raise ValueError(
                "cannot process flags argument with a compiled pattern")
        return pattern
    if not sre_compile.isstring(pattern):
        raise TypeError("first argument must be string or compiled pattern")
    p = sre_compile.compile(pattern, flags)
    if not (flags & DEBUG):
        if len(_cache) >= _MAXCACHE:
            _cache.clear()
        if p.flags & LOCALE:
            if not _locale:
                return p
            loc = _locale.setlocale(_locale.LC_CTYPE)
        else:
            loc = None
        _cache[type(pattern), pattern, flags] = p, loc
    return p

除了使用re.compile带来的小速度好处外,人们还喜欢命名潜在复杂的模式规范并将其与应用的业务逻辑分离所带来的可读性:

#### Patterns ############################################################
number_pattern = re.compile(r'\d+(\.\d*)?')    # Integer or decimal number
assign_pattern = re.compile(r':=')             # Assignment operator
identifier_pattern = re.compile(r'[A-Za-z]+')  # Identifiers
whitespace_pattern = re.compile(r'[\t ]+')     # Spaces and tabs

#### Applications ########################################################

if whitespace_pattern.match(s): business_logic_rule_1()
if assign_pattern.match(s): business_logic_rule_2()

注意,另一位受访者错误地认为pyc文件直接存储已编译的模式;然而,在现实中,每次PYC加载时,它们都会被重新构建:

>>> from dis import dis
>>> with open('tmp.pyc', 'rb') as f:
        f.read(8)
        dis(marshal.load(f))

  1           0 LOAD_CONST               0 (-1)
              3 LOAD_CONST               1 (None)
              6 IMPORT_NAME              0 (re)
              9 STORE_NAME               0 (re)

  3          12 LOAD_NAME                0 (re)
             15 LOAD_ATTR                1 (compile)
             18 LOAD_CONST               2 ('[aeiou]{2,5}')
             21 CALL_FUNCTION            1
             24 STORE_NAME               2 (lc_vowels)
             27 LOAD_CONST               1 (None)
             30 RETURN_VALUE

上面的分解来自于一个包含tmp.py的PYC文件:

import re
lc_vowels = re.compile(r'[aeiou]{2,5}')

使用第二个版本时,正则表达式在使用之前会进行编译。如果你要多次执行它,最好先编译它。如果不是每次编译都匹配一次性的是好的。