我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。

我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。


当前回答

您只需在Python中执行此操作。没有必要让它变得复杂。

import time

start = time.localtime()
end = time.localtime()
"""Total execution time in minutes$ """
print(end.tm_min - start.tm_min)
"""Total execution time in seconds$ """
print(end.tm_sec - start.tm_sec)

其他回答

要使用metakermit对Python 2.7的更新答案,您需要单调包。

代码如下:

from datetime import timedelta
from monotonic import monotonic

start_time = monotonic()
end_time = monotonic()
print(timedelta(seconds=end_time - start_time))

我尝试使用以下脚本找到时间差。

import time

start_time = time.perf_counter()
[main code here]
print (time.perf_counter() - start_time, "seconds")

在IPython中,“timeit”任何脚本:

def foo():
    %run bar.py
timeit foo()

我定义了以下Python装饰器:

def profile(fct):
  def wrapper(*args, **kw):
    start_time = time.time()
    ret = fct(*args, **kw)
    print("{} {} {} return {} in {} seconds".format(args[0].__class__.__name__,
                                                    args[0].__class__.__module__,
                                                    fct.__name__,
                                                    ret,
                                                    time.time() - start_time))
    return ret
  return wrapper

并将其用于函数或类/方法:

@profile
def main()
   ...

我使用了一个非常简单的函数来计时代码执行的一部分:

import time
def timing():
    start_time = time.time()
    return lambda x: print("[{:.2f}s] {}".format(time.time() - start_time, x))

要使用它,只需在代码之前调用它来度量以检索函数计时,然后在代码之后调用带有注释的函数。时间将显示在评论前面。例如:

t = timing()
train = pd.read_csv('train.csv',
                        dtype={
                            'id': str,
                            'vendor_id': str,
                            'pickup_datetime': str,
                            'dropoff_datetime': str,
                            'passenger_count': int,
                            'pickup_longitude': np.float64,
                            'pickup_latitude': np.float64,
                            'dropoff_longitude': np.float64,
                            'dropoff_latitude': np.float64,
                            'store_and_fwd_flag': str,
                            'trip_duration': int,
                        },
                        parse_dates = ['pickup_datetime', 'dropoff_datetime'],
                   )
t("Loaded {} rows data from 'train'".format(len(train)))

然后输出将如下所示:

[9.35s] Loaded 1458644 rows data from 'train'