我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
当前回答
以下代码段以可读的<HH:MM:SS>格式打印经过的时间。
import time
from datetime import timedelta
start_time = time.time()
#
# Perform lots of computations.
#
elapsed_time_secs = time.time() - start_time
msg = "Execution took: %s secs (Wall clock time)" % timedelta(seconds=round(elapsed_time_secs))
print(msg)
其他回答
我很喜欢保罗·麦奎尔的答案,但我使用的是Python 3。因此,对于感兴趣的人来说:这里是他在*nix上使用Python 3的答案的修改(我想,在Windows下,应该使用clock()而不是time()):
#python3
import atexit
from time import time, strftime, localtime
from datetime import timedelta
def secondsToStr(elapsed=None):
if elapsed is None:
return strftime("%Y-%m-%d %H:%M:%S", localtime())
else:
return str(timedelta(seconds=elapsed))
def log(s, elapsed=None):
line = "="*40
print(line)
print(secondsToStr(), '-', s)
if elapsed:
print("Elapsed time:", elapsed)
print(line)
print()
def endlog():
end = time()
elapsed = end-start
log("End Program", secondsToStr(elapsed))
start = time()
atexit.register(endlog)
log("Start Program")
如果你觉得这很有用,你仍然应该投票给他的答案,而不是这一个,因为他做了大部分工作;)。
您可以使用Python分析器cProfile来测量CPU时间,以及每个函数内部花费的时间以及每个函数被调用的次数。如果您想在不知道从哪里开始的情况下提高脚本的性能,这非常有用。对另一个堆栈溢出问题的回答很好。查看文档总是很好的。
以下是如何从命令行使用cProfile评测脚本的示例:
$ python -m cProfile euler048.py
1007 function calls in 0.061 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.061 0.061 <string>:1(<module>)
1000 0.051 0.000 0.051 0.000 euler048.py:2(<lambda>)
1 0.005 0.005 0.061 0.061 euler048.py:2(<module>)
1 0.000 0.000 0.061 0.061 {execfile}
1 0.002 0.002 0.053 0.053 {map}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler objects}
1 0.000 0.000 0.000 0.000 {range}
1 0.003 0.003 0.003 0.003 {sum}
我认为这是最好和最简单的方法:
from time import monotonic
start_time = monotonic()
# something
print(f"Run time {monotonic() - start_time} seconds")
或与装饰师一起:
from time import monotonic
def record_time(function):
def wrap(*args, **kwargs):
start_time = monotonic()
function_return = function(*args, **kwargs)
print(f"Run time {monotonic() - start_time} seconds")
return function_return
return wrap
@record_time
def your_function():
# something
我使用了一个非常简单的函数来计时代码执行的一部分:
import time
def timing():
start_time = time.time()
return lambda x: print("[{:.2f}s] {}".format(time.time() - start_time, x))
要使用它,只需在代码之前调用它来度量以检索函数计时,然后在代码之后调用带有注释的函数。时间将显示在评论前面。例如:
t = timing()
train = pd.read_csv('train.csv',
dtype={
'id': str,
'vendor_id': str,
'pickup_datetime': str,
'dropoff_datetime': str,
'passenger_count': int,
'pickup_longitude': np.float64,
'pickup_latitude': np.float64,
'dropoff_longitude': np.float64,
'dropoff_latitude': np.float64,
'store_and_fwd_flag': str,
'trip_duration': int,
},
parse_dates = ['pickup_datetime', 'dropoff_datetime'],
)
t("Loaded {} rows data from 'train'".format(len(train)))
然后输出将如下所示:
[9.35s] Loaded 1458644 rows data from 'train'
只需使用timeit模块。它同时适用于Python 2和Python 3。
import timeit
start = timeit.default_timer()
# All the program statements
stop = timeit.default_timer()
execution_time = stop - start
print("Program Executed in "+str(execution_time)) # It returns time in seconds
它在几秒钟内返回,您可以获得执行时间。这很简单,但您应该在启动程序执行的主函数中编写这些。如果您想获得执行时间,即使在出现错误时,也可以将参数“Start”设置为它,并在那里进行如下计算:
def sample_function(start,**kwargs):
try:
# Your statements
except:
# except statements run when your statements raise an exception
stop = timeit.default_timer()
execution_time = stop - start
print("Program executed in " + str(execution_time))