我如何添加一个颜色列到下面的数据框架,使颜色='绿色'如果设置== 'Z',和颜色='红色'否则?
Type Set
1 A Z
2 B Z
3 B X
4 C Y
我如何添加一个颜色列到下面的数据框架,使颜色='绿色'如果设置== 'Z',和颜色='红色'否则?
Type Set
1 A Z
2 B Z
3 B X
4 C Y
当前回答
另一种实现这一目标的方法是
df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')
其他回答
使用.apply()方法的一行代码如下:
df['color'] = df['Set'].apply(lambda set_: 'green' if set_=='Z' else 'red')
之后,df数据帧是这样的:
>>> print(df)
Type Set color
0 A Z green
1 B Z green
2 B X red
3 C Y red
当你有一个或几个条件时,可以使用下面的简单语句:
df['color'] = np.select(condlist=[df['Set']=="Z", df['Set']=="Y"], choicelist=["green", "yellow"], default="red")
容易,很好去!
更多信息请访问:https://numpy.org/doc/stable/reference/generated/numpy.select.html
列表推导式是有条件地创建另一列的另一种方法。如果您在列中使用对象dtype,就像您的示例一样,列表推导式通常优于大多数其他方法。
示例列表理解:
df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%时间它测试:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
%timeit df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit df['color'] = np.where(df['Set']=='Z', 'green', 'red')
%timeit df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')
1000 loops, best of 3: 239 µs per loop
1000 loops, best of 3: 523 µs per loop
1000 loops, best of 3: 263 µs per loop
如果只有两个选择,请使用np.where()
df = pd.DataFrame({'A':range(3)})
df['B'] = np.where(df.A>2, 'yes', 'no')
如果你有超过2个选择,也许apply()可以工作 输入
arr = pd.DataFrame({'A':list('abc'), 'B':range(3), 'C':range(3,6), 'D':range(6, 9)})
arr是
A B C D
0 a 0 3 6
1 b 1 4 7
2 c 2 5 8
如果你想让列E等于arr。A ==' A '然后arr。B elif arr。A=='b' then arr. c elif arr。A == 'c'则arr。解析:选D
arr['E'] = arr.apply(lambda x: x['B'] if x['A']=='a' else(x['C'] if x['A']=='b' else(x['D'] if x['A']=='c' else 1234)), axis=1)
最后是arr
A B C D E
0 a 0 3 6 0
1 b 1 4 7 4
2 c 2 5 8 8
另一种实现这一目标的方法是
df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')