我将数据从.csv文件读取到Pandas数据框架,如下所示。对于其中一列,即id,我想将列类型指定为int。问题是id系列有缺失/空值。

当我试图在读取.csv时将id列强制转换为整数时,我得到:

df= pd.read_csv("data.csv", dtype={'id': int}) 
error: Integer column has NA values

或者,我尝试转换列类型后,阅读如下,但这一次我得到:

df= pd.read_csv("data.csv") 
df[['id']] = df[['id']].astype(int)
error: Cannot convert NA to integer

我该如何解决这个问题?


当前回答

与Int64的问题,像许多其他的解决方案,是如果你有空值,他们被替换为<NA>值,这与熊猫默认的'NaN'函数,如isnull()或fillna()不工作。或者,如果您将值转换为-1,则可能会删除您的信息。我的解决方案有点蹩脚,但将用np提供int值。Nan,允许Nan函数在不影响您的值的情况下工作。

            def to_int(x):
                try:
                    return int(x)
                except:
                    return np.nan

            df[column] = df[column].apply(to_int)

其他回答

我在使用pyspark时遇到了这个问题。由于这是运行在jvm上的代码的python前端,它需要类型安全,使用float而不是int是不可取的。我把熊猫包裹起来,解决了这个问题。函数中的Read_csv,该函数将在将用户定义的列转换为所需类型之前,用用户定义的填充值填充用户定义的列。这是我最终使用的:

def custom_read_csv(file_path, custom_dtype = None, fill_values = None, **kwargs):
    if custom_dtype is None:
        return pd.read_csv(file_path, **kwargs)
    else:
        assert 'dtype' not in kwargs.keys()
        df = pd.read_csv(file_path, dtype = {}, **kwargs)
        for col, typ in custom_dtype.items():
            if fill_values is None or col not in fill_values.keys():
                fill_val = -1
            else:
                fill_val = fill_values[col]
            df[col] = df[col].fillna(fill_val).astype(typ)
    return df

使用.fillna()将所有NaN值替换为0,然后使用astype(int)将其转换为int

df['id'] = df['id'].fillna(0).astype(int)

如果你确实想在一个列中组合整数和nan,你可以使用'object'数据类型:

df['col'] = (
    df['col'].fillna(0)
    .astype(int)
    .astype(object)
    .where(df['col'].notnull())
)

这将用一个整数替换nan(不管哪个),转换为int,转换为object,最后重新插入nan。

现在可以创建一个包含nan的pandas列作为dtype int,因为它现在正式添加在pandas 0.24.0上

熊猫0.24。X发行说明 引用:“Pandas已经获得了保存缺少值的整型dtypes的能力

类似于@hibernado的答案,但保持为整数(而不是字符串)

df[col] = df[col].fillna(-1)
df[col] = df[col].astype(int)
df[col] = np.where(df[col] == -1, np.nan, df[col])