TLDR:你可以先过滤你的数组,然后执行你的映射,但这将需要对数组进行两次传递(过滤器返回一个数组映射)。因为这个数组很小,所以它的性能代价非常小。你也可以做简单的减法。然而,如果你想重新想象如何通过对数组(或任何数据类型)的一次传递来实现这一点,你可以使用Rich Hickey流行的“传感器”思想。
答:
我们不应该要求增加点链并对数组[]进行操作。map(fn1).filter(f2)…因为这种方法在内存中为每个约简函数创建中间数组。
最好的方法是对实际的约简函数进行操作,因此只有一次数据传递,没有额外的数组。
reduce函数是传递给reduce的函数,它接受累加器并从源函数输入,然后返回类似累加器的东西
// 1. create a concat reducing function that can be passed into `reduce`
const concat = (acc, input) => acc.concat([input])
// note that [1,2,3].reduce(concat, []) would return [1,2,3]
// transforming your reducing function by mapping
// 2. create a generic mapping function that can take a reducing function and return another reducing function
const mapping = (changeInput) => (reducing) => (acc, input) => reducing(acc, changeInput(input))
// 3. create your map function that operates on an input
const getSrc = (x) => x.src
const mappingSrc = mapping(getSrc)
// 4. now we can use our `mapSrc` function to transform our original function `concat` to get another reducing function
const inputSources = [{src:'one.html'}, {src:'two.txt'}, {src:'three.json'}]
inputSources.reduce(mappingSrc(concat), [])
// -> ['one.html', 'two.txt', 'three.json']
// remember this is really essentially just
// inputSources.reduce((acc, x) => acc.concat([x.src]), [])
// transforming your reducing function by filtering
// 5. create a generic filtering function that can take a reducing function and return another reducing function
const filtering = (predicate) => (reducing) => (acc, input) => (predicate(input) ? reducing(acc, input): acc)
// 6. create your filter function that operate on an input
const filterJsonAndLoad = (img) => {
console.log(img)
if(img.src.split('.').pop() === 'json') {
// game.loadSprite(...);
return false;
} else {
return true;
}
}
const filteringJson = filtering(filterJsonAndLoad)
// 7. notice the type of input and output of these functions
// concat is a reducing function,
// mapSrc transforms and returns a reducing function
// filterJsonAndLoad transforms and returns a reducing function
// these functions that transform reducing functions are "transducers", termed by Rich Hickey
// source: http://clojure.com/blog/2012/05/15/anatomy-of-reducer.html
// we can pass this all into reduce! and without any intermediate arrays
const sources = inputSources.reduce(filteringJson(mappingSrc(concat)), []);
// [ 'one.html', 'two.txt' ]
// ==================================
// 8. BONUS: compose all the functions
// You can decide to create a composing function which takes an infinite number of transducers to
// operate on your reducing function to compose a computed accumulator without ever creating that
// intermediate array
const composeAll = (...args) => (x) => {
const fns = args
var i = fns.length
while (i--) {
x = fns[i].call(this, x);
}
return x
}
const doABunchOfStuff = composeAll(
filtering((x) => x.src.split('.').pop() !== 'json'),
mapping((x) => x.src),
mapping((x) => x.toUpperCase()),
mapping((x) => x + '!!!')
)
const sources2 = inputSources.reduce(doABunchOfStuff(concat), [])
// ['ONE.HTML!!!', 'TWO.TXT!!!']
资源:丰富的吻痕传感器后