遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。

我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。

问题:

你用GA/GP解决过什么问题? 你使用了哪些库/框架?

我在寻找第一手的经验,所以请不要回答,除非你有。


当前回答

我做了一个完整的GA框架,命名为“GALAB”,解决了很多问题:

定位GSM ANTs (BTS)以减少重叠和空白位置。 资源约束项目调度。 进化图景的创造。(Evopic) 旅行推销员问题。 n -皇后和n -颜色问题。 骑士之旅和背包问题。 魔方和数独谜题。 字符串压缩,基于超字符串问题。 二维包装问题。 微型人工生命APP。 鲁比克难题。

其他回答

In 2007-9 I developed some software for reading datamatrix patterns. Often these patterns were difficult to read, being indented into scratched surfaces with all kinds of reflectance properties, fuzzy chemically etched markings and so on. I used a GA to fine tune various parameters of the vision algorithms to give the best results on a database of 300 images having known properties. Parameters were things like downsampling resolution, RANSAC parameters, amount of erosion and dilation, low pass filtering radius, and a few others. Running the optimisation over several days this produced results which were about 20% better than naive values on a test set of images unseen during the optimisation phase.

这个系统完全是从零开始编写的,我没有使用任何其他库。我并不反对使用这些东西,只要它们能提供可靠的结果,但是您必须注意许可兼容性和代码可移植性问题。

当你打算粉刷你的房子时,通常很难得到一个确切的颜色组合。通常,你脑海中有一些颜色,但它不是其中一种颜色,供应商向你展示。

昨天,我的GA研究员教授提到了一个发生在德国的真实故事(对不起,我没有更多的参考资料,是的,如果有人要求我可以找到它)。这个家伙(让我们称他为配色员)曾经挨家挨户地帮助人们找到确切的颜色代码(RGB),这将是客户心目中的衣柜。下面是他的做法:

The color guy used to carry with him a software program which used GA. He used to start with 4 different colors- each coded as a coded Chromosome (whose decoded value would be a RGB value). The consumer picks 1 of the 4 colors (Which is the closest to which he/she has in mind). The program would then assign the maximum fitness to that individual and move onto the next generation using mutation/crossover. The above steps would be repeated till the consumer had found the exact color and then color guy used to tell him the RGB combination!

通过将最大适应度分配给接近消费者想法的颜色,配色员的程序增加了收敛到消费者想法的颜色的机会。我发现它很有趣!

现在我已经得到了一个-1,如果你计划更多的-1,请说明这样做的原因!

在大学期间,我们使用NERO(神经网络和遗传算法的结合)来教游戏中的机器人做出智能决策。非常酷。

在我的婚宴上,我使用GA来优化座位分配。80位客人超过10张桌子。评估功能是基于让人们和他们的约会对象在一起,把有共同点的人放在一起,把观点完全相反的人放在不同的桌子上。

我运行了几次。每次我都有九张好桌子,还有一张都是怪球。最后,我妻子安排了座位。

我的旅行推销员优化器使用了一种新的染色体到行程的映射,这使得繁殖和变异染色体变得很简单,没有产生无效行程的风险。

更新:因为一些人问了…

以任意但一致的顺序(如按字母顺序排列)的客人(或城市)数组开始。称之为参考溶液。把客人的座位号看作是他/她的座位号。

我们没有尝试直接在染色体中编码这种顺序,而是编码将参考溶液转化为新溶液的指令。具体来说,我们将染色体视为数组中要交换的索引列表。为了解码染色体,我们从参考溶液开始,并应用由染色体指示的所有交换。交换数组中的两个条目总是会得到一个有效的解决方案:每个来宾(或城市)仍然只出现一次。

因此,染色体可以随机生成,突变,并与其他染色体交叉,总是会产生有效的解决方案。

在学校的一次研讨会上,我们开发了一个基于音乐模式生成音乐的应用程序。该程序是在Java中构建的,输出是一个midi文件与歌曲。我们使用不同的GA方法来生成音乐。我认为这个程序可以用来探索新的组合。