遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
我曾经尝试制作一个围棋电脑播放器,完全基于基因编程。每个程序都将被视为一系列动作的评估函数。即使是在一个相当小的3x4板上,制作的程序也不是很好。
我使用Perl,并自己编写了所有代码。我今天会做不同的事情。
其他回答
As part of my thesis I wrote a generic java framework for the multi-objective optimisation algorithm mPOEMS (Multiobjective prototype optimization with evolved improvement steps), which is a GA using evolutionary concepts. It is generic in a way that all problem-independent parts have been separated from the problem-dependent parts, and an interface is povided to use the framework with only adding the problem-dependent parts. Thus one who wants to use the algorithm does not have to begin from zero, and it facilitates work a lot.
你可以在这里找到代码。
你可以用这个算法找到的解决方案已经在科学工作中与最先进的算法SPEA-2和NSGA进行了比较,并且已经证明 算法的性能相当,甚至更好,这取决于您用来衡量性能的指标,特别是取决于您正在关注的优化问题。
你可以在这里找到它。
同样,作为我的论文和工作证明的一部分,我将这个框架应用于项目组合管理中的项目选择问题。它是关于选择对公司增加最大价值的项目,支持公司的战略或支持任何其他任意目标。例如,从特定类别中选择一定数量的项目,或最大化项目协同作用,……
我的论文将该框架应用于项目选择问题: http://www.ub.tuwien.ac.at/dipl/2008/AC05038968.pdf
之后,我在一家财富500强公司的投资组合管理部门工作,在那里他们使用了一种商业软件,该软件还将GA应用于项目选择问题/投资组合优化。
更多资源:
框架文档: http://thomaskremmel.com/mpoems/mpoems_in_java_documentation.pdf
mPOEMS演示论文: http://portal.acm.org/citation.cfm?id=1792634.1792653
实际上,只要有一点热情,每个人都可以很容易地将通用框架的代码适应任意的多目标优化问题。
除了一些常见的问题,如《旅行推销员》和Roger Alsing的《蒙娜丽莎》程序的变体,我还编写了一个进化数独求解器(这需要我自己更多的原创想法,而不仅仅是重新实现别人的想法)。解决数独游戏有更可靠的算法,但进化方法效果相当好。
在过去的几天里,在Reddit上看到这篇文章后,我一直在玩一个进化程序来寻找扑克的“冷牌”。目前还不太令人满意,但我想我可以改进。
我有自己的进化算法框架。
我开发了一个基于多线程摆动的模拟机器人导航通过一组随机网格地形的食物源和矿山,并开发了一个基于遗传算法的策略,探索机器人行为的优化和机器人染色体的适者生存基因。这是使用每个迭代周期的图表和映射来完成的。
从那以后,我发展了更多的游戏行为。我最近为自己构建的一个示例应用程序是一个遗传算法,用于解决在英国寻找路线时的旅行销售人员问题,考虑到起始和目标状态,以及一个/多个连接点,延误,取消,建筑工程,高峰时间,公共罢工,考虑最快和最便宜的路线。然后为某一天的路线提供一个平衡的建议。
一般来说,我的策略是使用基于POJO的基因表示,然后为选择、突变、交叉策略和标准点应用特定的接口实现。我的适应度函数就会变得非常复杂,这是基于我需要作为启发式测量应用的策略和标准。
我还研究了将遗传算法应用于代码中的自动化测试,使用系统突变周期,其中算法理解逻辑,并尝试确定带有代码修复建议的错误报告。基本上,这是一种优化我的代码并提供改进建议的方法,以及一种自动发现新编程代码的方法。我还尝试将遗传算法应用于音乐制作和其他应用。
一般来说,我发现进化策略就像大多数元启发式/全局优化策略一样,一开始学习很慢,但随着解决方案越来越接近目标状态,只要你的适应度函数和启发式很好地对齐,在你的搜索空间内产生收敛,它们就会开始学习。
我构建了一个简单的GA,用于在音乐播放时从频谱中提取有用的模式。输出用于驱动winamp插件中的图形效果。
输入:一些FFT帧(想象一个二维浮点数组) 输出:单个浮点值(输入的加权和),阈值为0.0或1.0 基因:输入权重 适应度函数:占空比、脉宽、BPM在合理范围内的组合。
我将一些ga调整到频谱的不同部分以及不同的BPM限制,所以它们不会趋向于收敛到相同的模式。来自每个种群的前4个的输出被发送到渲染引擎。
一个有趣的副作用是,整个人群的平均健康状况是音乐变化的一个很好的指标,尽管通常需要4-5秒才能发现。
我和一个同事正在研究一种解决方案,使用我们公司要求的各种标准将货物装载到卡车上。我一直在研究遗传算法的解决方案,而他正在使用具有激进修剪的分支和绑定。我们仍在实施这个解决方案的过程中,但到目前为止,我们已经取得了良好的结果。