大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。

但我很好奇,你是如何计算或近似你的算法的复杂性的?


当前回答

除了使用主方法(或其专门化之一)之外,我还通过实验测试了我的算法。这不能证明达到了任何特定的复杂度等级,但它可以保证数学分析是适当的。为了保证这一点,我将代码覆盖工具与我的实验结合起来使用,以确保我使用了所有的案例。

作为一个非常简单的例子,假设你想要对. net框架的列表排序的速度进行完整性检查。你可以像下面这样写,然后在Excel中分析结果,以确保它们不超过n*log(n)曲线。

在这个例子中,我测量了比较的数量,但也要谨慎地检查每个样本量所需的实际时间。然而,您必须更加小心,因为您只是在度量算法,而不包括来自测试基础结构的工件。

int nCmp = 0;
System.Random rnd = new System.Random();

// measure the time required to sort a list of n integers
void DoTest(int n)
{
   List<int> lst = new List<int>(n);
   for( int i=0; i<n; i++ )
      lst[i] = rnd.Next(0,1000);

   // as we sort, keep track of the number of comparisons performed!
   nCmp = 0;
   lst.Sort( delegate( int a, int b ) { nCmp++; return (a<b)?-1:((a>b)?1:0)); }

   System.Console.Writeline( "{0},{1}", n, nCmp );
}


// Perform measurement for a variety of sample sizes.
// It would be prudent to check multiple random samples of each size, but this is OK for a quick sanity check
for( int n = 0; n<1000; n++ )
   DoTest(n);

其他回答

看到这里的答案,我想我们可以得出这样的结论:我们大多数人确实通过观察它和使用常识来近似算法的顺序,而不是像我们在大学里认为的那样用主方法来计算它。 说了这么多,我必须补充一点,即使教授也鼓励我们(后来)实际思考,而不是仅仅计算。

我还想补充一下如何对递归函数进行处理:

假设我们有这样一个函数(scheme code):

(define (fac n)
    (if (= n 0)
        1
            (* n (fac (- n 1)))))

递归地计算给定数字的阶乘。

第一步是尝试并确定函数体的性能特征,只是在这种情况下,在函数体中没有做任何特殊的事情,只是一个乘法(或返回值1)。

所以主体的性能是:O(1)(常数)。

接下来尝试确定递归调用的数量。在这种情况下,我们有n-1个递归调用。

所以递归调用的性能是:O(n-1)(阶为n,因为我们抛弃了无关紧要的部分)。

然后把这两个放在一起,你就得到了整个递归函数的性能:

1 * (n-1) = O(n)


Peter, to answer your raised issues; the method I describe here actually handles this quite well. But keep in mind that this is still an approximation and not a full mathematically correct answer. The method described here is also one of the methods we were taught at university, and if I remember correctly was used for far more advanced algorithms than the factorial I used in this example. Of course it all depends on how well you can estimate the running time of the body of the function and the number of recursive calls, but that is just as true for the other methods.

熟悉我使用的算法/数据结构和/或快速分析迭代嵌套。难点在于,当您调用一个库函数时,可能会多次调用—您常常不确定是否在不必要的时候调用了函数,或者它们正在使用什么实现。也许库函数应该有一个复杂度/效率度量,无论是大O还是其他度量,都可以在文档或智能感知中得到。

对于第一种情况,内部循环执行了n-i次,因此执行的总次数是i从0到n-1(因为小于,而不是小于或等于)的和。你得到最后n * (n + 1) / 2,所以O (n²/ 2)= O (n²)。

对于第二个循环,i在0到n之间。然后,当j严格大于n时执行内循环,这是不可能的。

将算法分解成你知道的大O符号,并通过大O运算符组合。这是我知道的唯一办法。

欲了解更多信息,请查看有关该主题的维基百科页面。

经常被忽视的是算法的预期行为。它不会改变你的算法的大o,但它确实与“过早优化.. ..”的声明有关

你的算法的预期行为是——非常简单——你期望你的算法在你最有可能看到的数据上工作的速度有多快。

例如,如果你在一个列表中搜索一个值,它是O(n),但如果你知道你看到的大多数列表都有你的值在前面,你的算法的典型行为会更快。

为了真正确定它,你需要能够描述你的“输入空间”的概率分布(如果你需要对一个列表排序,这个列表已经被排序的频率是多少?有多少次是完全相反的?多长时间进行一次排序?)这并不总是可行的,但有时你知道。