昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

袜子,无论是真的还是类似的数据结构,都将成对提供。

最简单的答案是,在允许袜子对分开之前,应该初始化袜子对的单个数据结构,该结构包含指向左右袜子的指针,从而可以直接或通过袜子对引用袜子。袜子也可以扩展为包含指向其伙伴的指针。

这通过使用抽象层来消除任何计算配对问题。

将同样的想法应用于袜子配对的实际问题,显而易见的答案是:不要让你的袜子不配对。袜子是一双提供的,一双放在抽屉里(也许是把它们捆在一起),一双穿。但可能脱漆的地方是在洗衣机里,所以所需要的只是一个物理机制,让袜子保持在一起并有效地清洗。

有两种物理可能性:

对于一个“pair”对象,它保持指向每只袜子的指针,我们可以使用一个布袋来将袜子放在一起。这似乎是巨大的开销。

但是,为了让每一只袜子都能互相参照,有一个很好的解决方案:一个popper(如果你是美国人,可以使用“按扣”),比如:

http://www.aliexpress.com/compare/compare-invisible-snap-buttons.html

然后,你所做的就是在脱下袜子并将其放进洗衣篮后立即将袜子扣在一起,再次消除了需要用“配对”概念的物理抽象来对袜子进行配对的问题。

其他回答

我的解决方案并不完全符合您的要求,因为它正式需要O(n)“额外”空间。然而,考虑到我的条件,它在我的实际应用中非常有效。因此,我认为这应该很有趣。

与其他任务合并

我的特殊情况是,我不用烘干机,只是把衣服挂在普通的烘干机上。挂布需要O(n)操作(顺便说一句,我在这里总是考虑垃圾箱包装问题),这个问题本质上需要线性的“额外”空间。当我从桶里拿出一只新袜子时,如果这双袜子已经挂好了,我会试着把它挂在旁边。如果是新袜子,我会在旁边留出一些空间。

Oracle机器更好;-)

显然,这需要一些额外的工作来检查是否有匹配的袜子已经挂在某个地方,这将为计算机提供系数约为1/2的解O(n^2)。但在这种情况下,“人为因素”实际上是一种优势——如果匹配的袜子已经挂起,我通常可以很快(几乎为O(1))识别出它(可能涉及到大脑缓存中的一些难以察觉的因素)——将其视为一种有限的“预言机”,如oracle Machine;-)我们人类在某些情况下比数字机器有这些优势;-)

快到O(n)!

因此,将袜子配对的问题与挂布的问题联系起来,我可以免费获得O(n)“额外的空间”,并有一个及时的解决方案,大约O(n),只需要比简单的挂布多一点的工作,即使在非常糟糕的星期一早晨,也可以立即获得一双完整的袜子…;-)

我在攻读计算机科学博士期间经常思考这个问题。我提出了多种解决方案,这取决于区分袜子的能力,从而尽可能快地找到正确的袜子。

假设看袜子和记住它们独特图案的成本可以忽略不计(ε)。那么最好的解决办法就是把所有的袜子都扔到桌子上。这包括以下步骤:

将所有袜子放在一张桌子上(1),并创建一个hashmap{pattern:position}(ε)当有剩余袜子时(n/2):随机挑选一只袜子(1)查找相应袜子的位置(ε)取回袜子(1)并存放

这确实是最快的可能性,并且以n+1=O(n)复杂度执行。但它假设你完全记得所有的模式。。。在实践中,情况并非如此,我个人的经验是,你有时在第一次尝试时找不到匹配的一对:

把所有袜子扔在桌子上(1)当有剩余袜子时(n/2):随机挑选一只袜子(1)当未配对时(1/P):找到具有相似图案的袜子拿袜子,比较两者(1)如果可以,存储配对

这现在取决于我们找到匹配对的能力。如果你的深色/灰色双鞋或白色运动袜经常有非常相似的图案,这一点尤其正确!让我们承认你有概率找到相应的袜子。在找到相应的袜子以形成一双袜子之前,平均需要1/P的尝试。总体复杂度为1+(n/2)*(1+1/P)=O(n)。

两者在袜子数量上都是线性的,并且是非常相似的解决方案。让我们稍微修改一下这个问题,承认你有多双类似的袜子,并且很容易在一次移动中存储多双袜子(1+ε)。对于K个不同的模式,您可以实现:

对于每只袜子(n):随机挑选一只袜子(1)将其放到其模式的集群中对于每个集群(K):取簇并储存袜子(1+ε)

总体复杂度变为n+K=O(n)。它仍然是线性的,但选择正确的算法现在可能很大程度上取决于P和K的值!但人们可能会再次反对,因为您可能很难找到(或创建)每只袜子的集群。

此外,你也可以在网站上查找最佳算法,并提出自己的解决方案,从而节省时间:)

如果你可以将一双袜子抽象为密钥本身,将另一双袜子作为值,那么我们可以使用哈希来发挥作用。

在你身后的地板上做两个假想的部分,一个给你,另一个给配偶。从袜子堆里取一只。现在,按照以下规则将袜子一只一只地放在地板上。确定袜子是你的还是她的,并查看地板上的相关部分。如果你能在地板上找到这双鞋,就把它捡起来,把它们系起来,或者把它们夹起来,或者在找到一双鞋后做任何你想做的事情,然后把它放在篮子里(把它从地板上取下来)。将其放在相关章节中。重复3次,直到所有袜子都从袜子堆上取下。

说明:

哈希和抽象

抽象是一个非常强大的概念,已用于改善用户体验(UX)。现实生活中与计算机交互的抽象示例包括:

用于在GUI(图形用户界面)中导航以访问地址的文件夹图标,而不是键入实际地址以导航到某个位置。GUI滑块用于控制不同级别的音量、文档滚动位置等。。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

我相信提问者正在考虑使用哈希,这样在放置袜子之前,应该知道袜子的位置。

这就是为什么我建议将放在地板上的一只袜子抽象为哈希键本身(因此不需要复制袜子)。

如何定义哈希键?

如果有不止一双类似的袜子,下面的密钥定义也适用。也就是说,假设有两双黑色男士袜子PairA和PairB,每双袜子都被命名为PairA-L、PairA-R、PairB-L和PairB-R。因此,PairA-L可以与PairB-R配对,但PairA-L和PairB-L不能配对。

假设任何袜子都可以通过以下方式唯一标识,

属性[性别]+属性[颜色]+属性(材质)+属性[类型1]+属性[类别2]+属性[左_右]

这是我们的第一个哈希函数。让我们对这个h1(G_C_M_T1_T2_LR)使用一个简短的符号。h1(x)不是我们的位置键。

消除Left_or_Right属性的另一个哈希函数是h2(G_C_M_T1_T2)。第二个函数h2(x)是我们的位置键!(你身后地板上的空间)。

要定位插槽,请使用h2(G_C_M_T1_T2)。一旦找到了槽,就使用h1(x)来检查它们的哈希值。如果它们不匹配,你就有一对。否则,把袜子扔到同一个槽里。

注意:由于我们在找到一个插槽时删除了一个插槽,因此可以安全地假设最多只有一个插槽具有唯一的h2(x)或h1(x)值。

如果我们每只袜子正好有一对匹配的袜子,那么使用h2(x)来查找位置,如果没有袜子,则需要进行检查,因为可以安全地假设它们是一对。

为什么把袜子放在地板上很重要

让我们考虑一个场景,袜子堆在一起(最坏的情况)。这意味着我们别无选择,只能进行线性搜索来找到一对。

将它们铺在地板上可以提高可见度,从而提高发现匹配袜子(匹配哈希键)的机会。当第三步把袜子放在地板上时,我们的大脑已经下意识地记录了位置。-因此,如果这个位置在我们的内存中可用,我们可以直接找到匹配的配对。-如果没有记住位置,不要担心,然后我们可以一直返回到线性搜索。

为什么从地板上取下这对鞋很重要?

短期人类记忆在需要记忆的项目较少时效果最好。因此,增加了我们使用哈希来识别这对的概率。当使用线性搜索对时,它还将减少要搜索的项目的数量。

分析

情况1:最坏的情况是,Derpina无法记住或直接使用哈希技术在地板上发现袜子。Derp对地板上的物品进行线性搜索。这并不比遍历堆以找到对更糟。比较上限:O(n^2)。比较下限:(n/2)。(当Derpina每捡一只袜子都是上一只的时候)。案例2:德普记得他放在地板上的每一只袜子的位置,每只袜子正好有一双。比较上限:O(n/2)。比较下限:O(n/2)。

我说的是比较操作,从袜子堆里挑选袜子必然是n次操作。因此,实际的下限是n次迭代,n/2次比较。

加快进度

为了获得完美的分数,使Derp获得O(n/2)比较,我建议Derpina,

花更多时间穿袜子来熟悉它。是的,这意味着也要花更多时间穿着德普的袜子。玩记忆游戏,如在网格中找出对,可以提高短期记忆性能,这是非常有益的。

这是否等同于元素清晰度问题?

我建议的方法是用于解决元素区分问题的方法之一,将它们放在哈希表中并进行比较。

考虑到您的特殊情况,即只有一个精确的对,它已经变得非常等价于元素区别问题。因为我们甚至可以对袜子进行分类,并检查相邻袜子是否成对(EDP的另一种解决方案)。

然而,如果给定袜子可能存在不止一双,那么它就偏离了EDP。

对于p双袜子(n=2p只袜子),我实际上是这样做的:

从袜子堆里随便拿一只袜子。对于第一只袜子,或者如果之前选择的所有袜子都已配对,只需将袜子放入前面未配对袜子“阵列”的第一个“槽”中。如果有一个或多个选定的未配对袜子,请对照阵列中的所有未配对袜子检查当前袜子。在构建阵列时,可以将袜子分为普通类别或类型(白色/黑色、脚踝/圆领、运动型/连衣裙),并“向下搜索”以仅比较同类。如果你找到了一个可以接受的匹配,把两只袜子放在一起,然后把它们从阵列中去掉。如果没有,请将当前袜子放入阵列中第一个打开的插槽中。对每只袜子重复上述步骤。

这种方案的最坏情况是,每双袜子都不同,必须完全匹配,而且你挑选的第一双n/2袜子都不同。这是你的O(n2)场景,极不可能。如果袜子的独特类型的数量t小于袜子对的数量p=n/2,并且每种类型的袜子都足够相似(通常在穿着相关的术语中),使得该类型的任何袜子都可以与任何其他袜子配对,那么正如我上面所推断的,你必须与之进行比较的袜子的最大数量是t,之后你拉动的下一只袜子将与未配对的袜子之一相匹配。这种情况在普通袜子抽屉中比在最坏情况下更可能发生,并将最坏情况的复杂性降低到O(n*t),其中通常t<<n。

我所做的就是拿起第一只袜子,把它放下(比如,放在洗衣碗的边缘)。然后我拿起另一只袜子,检查它是否与第一只袜子相同。如果是,我会把它们都去掉。如果不是,我把它放在第一只袜子旁边。然后我拿起第三只袜子,将其与前两只袜子进行比较(如果它们还在的话)。等

这种方法可以很容易地在阵列中实现,假设“移除”袜子是一个选项。实际上,你甚至不需要“脱掉”袜子。如果您不需要对袜子进行排序(见下文),那么您只需移动它们,就可以得到一个数组,该数组中所有袜子都成对排列。

假设袜子的唯一操作是比较相等,这个算法基本上仍然是n2算法,尽管我不知道平均情况(从未学会计算)。

当然,分类可以提高效率,尤其是在现实生活中,你可以很容易地将袜子“插入”在另外两个袜子之间。在计算中,树也可以做到这一点,但这是额外的空间。当然,我们又回到了NlogN(或者更多,如果有几只袜子按排序标准是相同的,但不是来自同一双)。

除此之外,我想不出什么,但这种方法在现实生活中似乎非常有效