昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。
作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。
哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。
因此,问题基本上是:
给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)
我将感谢回答以下方面的问题:
大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?
我提出的解决方案假设所有袜子在细节上都是相同的,除了颜色。如果袜子之间有更多的细节需要延迟,这些细节可以用来定义不同类型的袜子,而不是我的例子中的颜色。。
假设我们有一堆袜子,袜子可以有三种颜色:蓝色、红色或绿色。
然后,我们可以为每种颜色创建一个并行工作程序;它有自己的列表来填充相应的颜色。
At time i:
Blue read Pile[i] : If Blue then Blue.Count++ ; B=TRUE ; sync
Red read Pile[i+1] : If Red then Red.Count++ ; R=TRUE ; sync
Green read Pile [i+2] : If Green then Green.Count++ ; G=TRUE ; sync
同步过程:
Sync i:
i++
If R is TRUE:
i++
If G is TRUE:
i++
这需要初始化:
Init:
If Pile[0] != Blue:
If Pile[0] = Red : Red.Count++
Else if Pile[0] = Green : Green.Count++
If Pile[1] != Red:
If Pile[0] = Green : Green.Count++
哪里
Best Case: B, R, G, B, R, G, .., B, R, G
Worst Case: B, B, B, .., B
Time(Worst-Case) = C * n ~ O(n)
Time(Best-Case) = C * (n/k) ~ O(n/k)
n: number of sock pairs
k: number of colors
C: sync overhead
由于人脑的结构与现代CPU完全不同,所以这个问题毫无实际意义。
人类可以利用“找到匹配的对”这一事实来战胜CPU算法,这对于一个不太大的集合来说是一个操作。
我的算法:
spread_all_socks_on_flat_surface();
while (socks_left_on_a_surface()) {
// Thanks to human visual SIMD, this is one, quick operation.
pair = notice_any_matching_pair();
remove_socks_pair_from_surface(pair);
}
至少这是我在现实生活中使用的,我发现它非常有效。缺点是它需要一个平坦的表面,但通常很丰富。
为了说明从一堆袜子中配对有多有效,我们必须首先定义机器,因为配对不是通过图灵或随机存取机器完成的,而随机存取机器通常用作算法分析的基础。
机器
机器是被称为人类的现实世界元素的抽象。它能够通过一双眼睛从环境中阅读。我们的机器模型能够通过使用两个手臂来操纵环境。逻辑和算术运算是用我们的大脑计算的(希望是;-)。
我们还必须考虑可以使用这些仪器执行的原子操作的内在运行时间。由于物理限制,由手臂或眼睛执行的操作具有非恒定的时间复杂性。这是因为我们不能用手臂移动一大堆无穷无尽的袜子,也不能用眼睛看到一大堆袜子上的袜子。
然而,机械物理学也给了我们一些好处。我们不限于用手臂移动最多一只袜子。我们可以一次移动两个。
因此,根据之前的分析,应按降序使用以下操作:
逻辑和算术运算环境读数环境改造
我们还可以利用这样一个事实,即人们只有非常有限的袜子。因此,环境改造可能涉及到所有袜子。
算法
我的建议是:
把袜子堆里的袜子都铺在地板上。通过看地板上的袜子找到一双。从2开始重复,直到无法配对。从1开始重复,直到地板上没有袜子。
操作4是必要的,因为当将袜子铺在地板上时,一些袜子可能会隐藏其他袜子。算法分析如下:
分析
该算法以高概率终止。这是由于在第二步中找不到袜子。
对于以下对n双袜子配对的运行时分析,我们假设在步骤1之后,至少有一半的2n双袜子没有隐藏。所以在平均情况下,我们可以找到n/2对。这意味着步骤4的循环执行了O(logn)次。步骤2执行O(n^2)次。因此,我们可以得出结论:
该算法涉及O(lnn+n)环境修改(步骤1 O(lnn)加上从地板上挑选每双袜子)该算法涉及步骤2中的O(n^2)个环境读数该算法包括O(n^2)个逻辑和算术运算,用于在步骤2中比较袜子和另一袜子
因此,我们的总运行时复杂度为O(r*n^2+w*(lnn+n)),其中r和w分别是合理数量袜子的环境读取和环境写入操作的因素。省略了逻辑运算和算术运算的成本,因为我们假设需要恒定数量的逻辑运算和算数运算来决定2只袜子是否属于同一对。这可能在每种情况下都不可行。