我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。
y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)
当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?
请参见:如何提前查看Python生成器中的一个元素?
我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。
y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)
当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?
请参见:如何提前查看Python生成器中的一个元素?
当前回答
我想为一个老问题提供一个不同的解决方案
class IterableAdapter:
def __init__(self, iterator_factory):
self.iterator_factory = iterator_factory
def __iter__(self):
return self.iterator_factory()
squares = IterableAdapter(lambda: (x * x for x in range(5)))
for x in squares: print(x)
for x in squares: print(x)
与list(iterator)相比,这样做的好处是它的空间复杂度是O(1),而list(iterator)是O(n)。缺点是,如果你只能访问迭代器,而不能访问产生迭代器的函数,那么你就不能使用这个方法。例如,这样做似乎是合理的,但它不会起作用。
g = (x * x for x in range(5))
squares = IterableAdapter(lambda: g)
for x in squares: print(x)
for x in squares: print(x)
其他回答
我不知道你说的昂贵的准备是什么意思,但我猜你确实有
data = ... # Expensive computation
y = FunctionWithYield(data)
for x in y: print(x)
#here must be something to reset 'y'
# this is expensive - data = ... # Expensive computation
# y = FunctionWithYield(data)
for x in y: print(x)
如果是这样的话,为什么不重用数据呢?
另一种选择是使用itertools.tee()函数创建生成器的第二个版本:
import itertools
y = FunctionWithYield()
y, y_backup = itertools.tee(y)
for x in y:
print(x)
for x in y_backup:
print(x)
从内存使用的角度来看,如果原始迭代可能不处理所有的项,这可能是有益的。
>>> def gen():
... def init():
... return 0
... i = init()
... while True:
... val = (yield i)
... if val=='restart':
... i = init()
... else:
... i += 1
>>> g = gen()
>>> g.next()
0
>>> g.next()
1
>>> g.next()
2
>>> g.next()
3
>>> g.send('restart')
0
>>> g.next()
1
>>> g.next()
2
现在可以使用more_itertools。Seekable(第三方工具),允许重置迭代器。
通过> pip Install more_itertools安装
import more_itertools as mit
y = mit.seekable(FunctionWithYield())
for x in y:
print(x)
y.seek(0) # reset iterator
for x in y:
print(x)
注意:内存消耗会随着迭代器的增加而增加,所以要警惕大型迭代对象。
好吧,你说你想多次调用一个生成器,但初始化是昂贵的…像这样的东西怎么样?
class InitializedFunctionWithYield(object):
def __init__(self):
# do expensive initialization
self.start = 5
def __call__(self, *args, **kwargs):
# do cheap iteration
for i in xrange(5):
yield self.start + i
y = InitializedFunctionWithYield()
for x in y():
print x
for x in y():
print x
或者,你也可以创建自己的类,遵循迭代器协议,并定义某种“reset”函数。
class MyIterator(object):
def __init__(self):
self.reset()
def reset(self):
self.i = 5
def __iter__(self):
return self
def next(self):
i = self.i
if i > 0:
self.i -= 1
return i
else:
raise StopIteration()
my_iterator = MyIterator()
for x in my_iterator:
print x
print 'resetting...'
my_iterator.reset()
for x in my_iterator:
print x
https://docs.python.org/2/library/stdtypes.html#iterator-types http://anandology.com/python-practice-book/iterators.html