一般来说,有没有一种有效的方法可以知道Python中的迭代器中有多少个元素,而不用遍历每个元素并计数?
当前回答
一个简单的基准:
import collections
import itertools
def count_iter_items(iterable):
counter = itertools.count()
collections.deque(itertools.izip(iterable, counter), maxlen=0)
return next(counter)
def count_lencheck(iterable):
if hasattr(iterable, '__len__'):
return len(iterable)
d = collections.deque(enumerate(iterable, 1), maxlen=1)
return d[0][0] if d else 0
def count_sum(iterable):
return sum(1 for _ in iterable)
iter = lambda y: (x for x in xrange(y))
%timeit count_iter_items(iter(1000))
%timeit count_lencheck(iter(1000))
%timeit count_sum(iter(1000))
结果:
10000 loops, best of 3: 37.2 µs per loop
10000 loops, best of 3: 47.6 µs per loop
10000 loops, best of 3: 61 µs per loop
例如,简单的count_iter_items是可行的方法。
为python3调整:
61.9 µs ± 275 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
74.4 µs ± 190 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
82.6 µs ± 164 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
其他回答
我喜欢这个基数包,它是非常轻量级的,并尝试使用最快的实现,这取决于可迭代对象。
用法:
>>> import cardinality
>>> cardinality.count([1, 2, 3])
3
>>> cardinality.count(i for i in range(500))
500
>>> def gen():
... yield 'hello'
... yield 'world'
>>> cardinality.count(gen())
2
count()的实际实现如下:
def count(iterable):
if hasattr(iterable, '__len__'):
return len(iterable)
d = collections.deque(enumerate(iterable, 1), maxlen=1)
return d[0][0] if d else 0
迭代器只是一个对象,它有一个指向下一个对象的指针,由某种缓冲区或流读取,它就像一个LinkedList,在那里你不知道你有多少东西,直到你遍历它们。迭代器是高效的,因为它们所做的一切都是通过引用而不是使用索引告诉你下一个是什么(但是正如你所看到的,你失去了查看下一个条目有多少的能力)。
有点。你可以检查__length_hint__方法,但要注意(至少在Python 3.4之前,正如gsnedders所指出的那样),它是一个未记录的实现细节(在线程中跟随消息),它很可能消失或召唤鼻子恶魔。
否则,没有。迭代器只是一个只公开next()方法的对象。你可以根据需要多次调用它,它们最终可能引发也可能不会引发StopIteration。幸运的是,大多数时候这种行为对编码器来说是透明的。:)
这违背了迭代器的定义,迭代器是一个指向对象的指针,加上如何到达下一个对象的信息。
迭代器不知道在终止之前它还能迭代多少次。这个可以是无穷,所以无穷可能是你的答案。
我决定在现代版本的Python上重新运行基准测试,并发现几乎完全颠倒了基准测试
我运行了以下命令:
py -m timeit -n 10000000 -s "it = iter(range(1000000))" -s "from collections import deque" -s "from itertools import count" -s "def itlen(x):" -s " return len(tuple(x))" -- "itlen(it)"
py -m timeit -n 10000000 -s "it = iter(range(1000000))" -s "from collections import deque" -s "from itertools import count" -s "def itlen(x):" -s " return len(list(x))" -- "itlen(it)"
py -m timeit -n 10000000 -s "it = iter(range(1000000))" -s "from collections import deque" -s "from itertools import count" -s "def itlen(x):" -s " return sum(map(lambda i: 1, x))" -- "itlen(it)"
py -m timeit -n 10000000 -s "it = iter(range(1000000))" -s "from collections import deque" -s "from itertools import count" -s "def itlen(x):" -s " return sum(1 for _ in x)" -- "itlen(it)"
py -m timeit -n 10000000 -s "it = iter(range(1000000))" -s "from collections import deque" -s "from itertools import count" -s "def itlen(x):" -s " d = deque(enumerate(x, 1), maxlen=1)" -s " return d[0][0] if d else 0" -- "itlen(it)"
py -m timeit -n 10000000 -s "it = iter(range(1000000))" -s "from collections import deque" -s "from itertools import count" -s "def itlen(x):" -s " counter = count()" -s " deque(zip(x, counter), maxlen=0)" -s " return next(counter)" -- "itlen(it)"
它们等价于为以下每个itlen*(it)函数计时:
it = iter(range(1000000))
from collections import deque
from itertools import count
def itlen1(x):
return len(tuple(x))
def itlen2(x):
return len(list(x))
def itlen3(x):
return sum(map(lambda i: 1, x))
def itlen4(x):
return sum(1 for _ in x)
def itlen5(x):
d = deque(enumerate(x, 1), maxlen=1)
return d[0][0] if d else 0
def itlen6(x):
counter = count()
deque(zip(x, counter), maxlen=0)
return next(counter)
在装有AMD Ryzen 7 5800H和16 GB RAM的Windows 11、Python 3.11机器上,我得到了以下输出:
10000000 loops, best of 5: 103 nsec per loop
10000000 loops, best of 5: 107 nsec per loop
10000000 loops, best of 5: 138 nsec per loop
10000000 loops, best of 5: 164 nsec per loop
10000000 loops, best of 5: 338 nsec per loop
10000000 loops, best of 5: 425 nsec per loop
这表明len(list(x))和len(tuple(x))是绑定的;后面跟着sum(map(lambda i: 1, x));然后紧靠sum(1 for _ in x);那么其他答案中提到的其他更复杂的方法和/或在基数中使用的方法至少要慢两倍。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录