如何生成列表的所有排列?例如:
permutations([])
[]
permutations([1])
[1]
permutations([1, 2])
[1, 2]
[2, 1]
permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
如何生成列表的所有排列?例如:
permutations([])
[]
permutations([1])
[1]
permutations([1, 2])
[1, 2]
[2, 1]
permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
当前回答
生成所有可能的排列
我正在使用python3.4:
def calcperm(arr, size):
result = set([()])
for dummy_idx in range(size):
temp = set()
for dummy_lst in result:
for dummy_outcome in arr:
if dummy_outcome not in dummy_lst:
new_seq = list(dummy_lst)
new_seq.append(dummy_outcome)
temp.add(tuple(new_seq))
result = temp
return result
测试用例:
lst = [1, 2, 3, 4]
#lst = ["yellow", "magenta", "white", "blue"]
seq = 2
final = calcperm(lst, seq)
print(len(final))
print(final)
其他回答
此解决方案实现了一个生成器,以避免在内存中保留所有排列:
def permutations (orig_list):
if not isinstance(orig_list, list):
orig_list = list(orig_list)
yield orig_list
if len(orig_list) == 1:
return
for n in sorted(orig_list):
new_list = orig_list[:]
pos = new_list.index(n)
del(new_list[pos])
new_list.insert(0, n)
for resto in permutations(new_list[1:]):
if new_list[:1] + resto <> orig_list:
yield new_list[:1] + resto
使用标准库中的itertools.permutations:
import itertools
list(itertools.permutations([1, 2, 3]))
从这里改编的是itertools.permutations如何实现的演示:
def permutations(elements):
if len(elements) <= 1:
yield elements
return
for perm in permutations(elements[1:]):
for i in range(len(elements)):
# nb elements[0:1] works in both string and list contexts
yield perm[:i] + elements[0:1] + perm[i:]
itertools.permutations文档中列出了两种替代方法
def permutations(iterable, r=None):
# permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
# permutations(range(3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:
return
indices = range(n)
cycles = range(n, n-r, -1)
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
另一个基于itertools.product:
def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):
if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)
生成所有可能的排列
我正在使用python3.4:
def calcperm(arr, size):
result = set([()])
for dummy_idx in range(size):
temp = set()
for dummy_lst in result:
for dummy_outcome in arr:
if dummy_outcome not in dummy_lst:
new_seq = list(dummy_lst)
new_seq.append(dummy_outcome)
temp.add(tuple(new_seq))
result = temp
return result
测试用例:
lst = [1, 2, 3, 4]
#lst = ["yellow", "magenta", "white", "blue"]
seq = 2
final = calcperm(lst, seq)
print(len(final))
print(final)
def permuteArray (arr):
arraySize = len(arr)
permutedList = []
if arraySize == 1:
return [arr]
i = 0
for item in arr:
for elem in permuteArray(arr[:i] + arr[i + 1:]):
permutedList.append([item] + elem)
i = i + 1
return permutedList
我不打算在一个新的行中穷尽所有的可能性,以使它有点独特。
用递归求解,遍历元素,取第i个元素,然后问自己:“其余项目的排列是什么”,直到没有更多的元素。
我在这里解释了解决方案:https://www.youtube.com/watch?v=_7GE7psS2b4
class Solution:
def permute(self,nums:List[int])->List[List[int]]:
res=[]
def dfs(nums,path):
if len(nums)==0:
res.append(path)
for i in range(len(nums)):
dfs(nums[:i]+nums[i+1:],path+[nums[i]])
dfs(nums,[])
return res