我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
当前回答
感谢这篇文章:https://stackoverflow.com/a/5204280/13890678
我用结构化数组找到了一个更“通用”的答案。 我认为这种方法的一个优点是代码更容易阅读。
import numpy as np
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
struct_a = np.core.records.fromarrays(
a.transpose(), names="col1, col2, col3", formats="i8, i8, i8"
)
struct_a.sort(order="col2")
print(struct_a)
[(7, 0, 5) (9, 2, 3) (4, 5, 6)]
其他回答
这里是另一个考虑所有列的解决方案(J.J的答案更紧凑的方式);
ar=np.array([[0, 0, 0, 1],
[1, 0, 1, 0],
[0, 1, 0, 0],
[1, 0, 0, 1],
[0, 0, 1, 0],
[1, 1, 0, 0]])
用lexsort排序,
ar[np.lexsort(([ar[:, i] for i in range(ar.shape[1]-1, -1, -1)]))]
输出:
array([[0, 0, 0, 1],
[0, 0, 1, 0],
[0, 1, 0, 0],
[1, 0, 0, 1],
[1, 0, 1, 0],
[1, 1, 0, 0]])
这是一个老问题,但如果你需要将其推广到高于2维的数组,下面是可以很容易推广的解决方案:
np.einsum('ij->ij', a[a[:,1].argsort(),:])
对于二维来说,这是一个过度的处理,对于@steve的答案,一个[a[:,1].argsort()]就足够了,但是这个答案不能推广到更高的维度。你可以在这个问题中找到一个3D数组的例子。
输出:
[[7 0 5]
[9 2 3]
[4 5 6]]
按a的第二列排序:
a[a[:, 1].argsort()]
你可以按照Steve Tjoa的方法对多个列进行排序,使用像归并排序这样的稳定排序,并从最不重要的列到最重要的列对索引进行排序:
a = a[a[:,2].argsort()] # First sort doesn't need to be stable.
a = a[a[:,1].argsort(kind='mergesort')]
a = a[a[:,0].argsort(kind='mergesort')]
这是按第0列,第1列,第2列排序。
简单地使用排序,使用您想要排序的列号。
a = np.array([1,1], [1,-1], [-1,1], [-1,-1]])
print (a)
a = a.tolist()
a = np.array(sorted(a, key=lambda a_entry: a_entry[0]))
print (a)