考虑下面四个百分比,用浮点数表示:

    13.626332%
    47.989636%
     9.596008%
    28.788024%
   -----------
   100.000000%

我需要用整数表示这些百分比。如果我简单地使用Math.round(),我最终得到的总数是101%。

14 + 48 + 10 + 29 = 101

如果我使用parseInt(),我最终得到了97%。

13 + 47 + 9 + 28 = 97

有什么好的算法可以将任何百分比数表示为整数,同时还保持总数为100%?


编辑:在阅读了一些评论和回答后,显然有很多方法可以解决这个问题。

在我看来,为了保持数字的真实性,“正确”的结果是最小化总体误差的结果,定义为相对于实际值会引入多少误差舍入:

        value  rounded     error               decision
   ----------------------------------------------------
    13.626332       14      2.7%          round up (14)
    47.989636       48      0.0%          round up (48)
     9.596008       10      4.0%    don't round up  (9)
    28.788024       29      2.7%          round up (29)

在平局的情况下(3.33,3.33,3.33)可以做出任意的决定(例如3,4,3)。


当前回答

我认为以下几点可以达到你的目的

function func( orig, target ) {

    var i = orig.length, j = 0, total = 0, change, newVals = [], next, factor1, factor2, len = orig.length, marginOfErrors = [];

    // map original values to new array
    while( i-- ) {
        total += newVals[i] = Math.round( orig[i] );
    }

    change = total < target ? 1 : -1;

    while( total !== target ) {

        // Iterate through values and select the one that once changed will introduce
        // the least margin of error in terms of itself. e.g. Incrementing 10 by 1
        // would mean an error of 10% in relation to the value itself.
        for( i = 0; i < len; i++ ) {

            next = i === len - 1 ? 0 : i + 1;

            factor2 = errorFactor( orig[next], newVals[next] + change );
            factor1 = errorFactor( orig[i], newVals[i] + change );

            if(  factor1 > factor2 ) {
                j = next; 
            }
        }

        newVals[j] += change;
        total += change;
    }


    for( i = 0; i < len; i++ ) { marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i]; }

    // Math.round() causes some problems as it is difficult to know at the beginning
    // whether numbers should have been rounded up or down to reduce total margin of error. 
    // This section of code increments and decrements values by 1 to find the number
    // combination with least margin of error.
    for( i = 0; i < len; i++ ) {
        for( j = 0; j < len; j++ ) {
            if( j === i ) continue;

            var roundUpFactor = errorFactor( orig[i], newVals[i] + 1)  + errorFactor( orig[j], newVals[j] - 1 );
            var roundDownFactor = errorFactor( orig[i], newVals[i] - 1) + errorFactor( orig[j], newVals[j] + 1 );
            var sumMargin = marginOfErrors[i] + marginOfErrors[j];

            if( roundUpFactor < sumMargin) { 
                newVals[i] = newVals[i] + 1;
                newVals[j] = newVals[j] - 1;
                marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i];
                marginOfErrors[j] = newVals[j] && Math.abs( orig[j] - newVals[j] ) / orig[j];
            }

            if( roundDownFactor < sumMargin ) { 
                newVals[i] = newVals[i] - 1;
                newVals[j] = newVals[j] + 1;
                marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i];
                marginOfErrors[j] = newVals[j] && Math.abs( orig[j] - newVals[j] ) / orig[j];
            }

        }
    }

    function errorFactor( oldNum, newNum ) {
        return Math.abs( oldNum - newNum ) / oldNum;
    }

    return newVals;
}


func([16.666, 16.666, 16.666, 16.666, 16.666, 16.666], 100); // => [16, 16, 17, 17, 17, 17]
func([33.333, 33.333, 33.333], 100); // => [34, 33, 33]
func([33.3, 33.3, 33.3, 0.1], 100); // => [34, 33, 33, 0] 
func([13.25, 47.25, 11.25, 28.25], 100 ); // => [13, 48, 11, 28]
func( [25.5, 25.5, 25.5, 23.5], 100 ); // => [25, 25, 26, 24]

最后一件事,我使用问题中最初给出的数字运行函数,与期望的输出进行比较

func([13.626332, 47.989636, 9.596008, 28.788024], 100); // => [48, 29, 13, 10]

这与问题想要的不同=>[48,29,14,9]。我无法理解这一点,直到我看了总误差范围

-------------------------------------------------
| original  | question | % diff | mine | % diff |
-------------------------------------------------
| 13.626332 | 14       | 2.74%  | 13   | 4.5%   |
| 47.989636 | 48       | 0.02%  | 48   | 0.02%  |
| 9.596008  | 9        | 6.2%   | 10   | 4.2%   |
| 28.788024 | 29       | 0.7%   | 29   | 0.7%   |
-------------------------------------------------
| Totals    | 100      | 9.66%  | 100  | 9.43%  |
-------------------------------------------------

从本质上讲,我的函数的结果实际上引入了最少的误差。

小提琴在这里

其他回答

我曾经写过一个un舍入工具,来找到一组数字的最小扰动来匹配一个目标。这是一个不同的问题,但理论上可以在这里使用类似的想法。在这种情况下,我们有一系列的选择。

因此,对于第一个元素,我们可以四舍五入到14,也可以四舍五入到13。这样做的代价(在二进制整数编程的意义上)对于向上舍入比向下舍入要小,因为向下舍入需要我们将该值移动更大的距离。同样,我们可以把每个数字四舍五入,所以我们总共有16个选择。

  13.626332
  47.989636
   9.596008
+ 28.788024
-----------
 100.000000

我通常会在MATLAB中使用bintprog(一种二进制整数编程工具)解决一般问题,但这里只有几个选项需要测试,所以用简单的循环就可以很容易地测试出16个选项中的每一个。例如,假设我们将这个集合四舍五入为:

 Original      Rounded   Absolute error
   13.626           13          0.62633
    47.99           48          0.01036
    9.596           10          0.40399
 + 28.788           29          0.21198
---------------------------------------
  100.000          100          1.25266

总绝对误差为1.25266。它可以通过以下替代舍入来略微减少:

 Original      Rounded   Absolute error
   13.626           14          0.37367
    47.99           48          0.01036
    9.596            9          0.59601
 + 28.788           29          0.21198
---------------------------------------
  100.000          100          1.19202

事实上,这就是绝对误差的最优解。当然,如果有20项,搜索空间的大小将是2^20 = 1048576。对于30或40个术语,这个空间将是相当大的。在这种情况下,您将需要使用能够有效搜索空间的工具,可能使用分支和绑定方案。

只要您不关心对原始十进制数据的依赖,就有许多方法可以做到这一点。

第一种也是最流行的方法是最大余数法

基本上就是:

四舍五入 求sum和100的差值 将差值按小数部分的递减顺序加1

在你的例子中,它是这样的:

13.626332%
47.989636%
 9.596008%
28.788024%

如果取整数部分,就得到

13
47
 9
28

加起来是97,再加3。现在,你看小数点部分

.626332%
.989636%
.596008%
.788024%

取最大的,直到总数达到100。所以你会得到:

14
48
 9
29

或者,您可以简单地选择显示一个小数位而不是整数值。所以数字是48.3和23.9等等。这会使方差从100下降很多。

这是一个银行家四舍五入的例子,又名“四舍五入半偶数”。BigDecimal支持。它的目的是确保四舍五入平衡,即不偏袒银行或客户。

不要把四舍五入的数字相加。你会得到不准确的结果。总数可能会显著偏离,这取决于术语的数量和小数部分的分布。

显示四舍五入的数字,但和实际值。根据你呈现数字的方式不同,实际的方法也会有所不同。这样你就能得到

14 48 10 29 __ 100

不管怎样,都会有差异。在你的例子中,没有办法显示加起来等于100的数字而不以错误的方式“舍入”一个值(最小的错误是将9.596更改为9)

EDIT

你需要在以下选项中做出选择:

项目的准确性 和的准确性(如果你是四舍五入的值) 四舍五入的项目与四舍五入的总和的一致性)

大多数情况下,当处理百分比时,第三种方法是最好的选择,因为当总数等于101%时比当单个项目的总数不等于100时更明显,并且您可以保持单个项目的准确性。“舍入”9.596到9在我看来是不准确的。

为了解释这一点,我有时会添加一个脚注,解释各个值是四舍五入的,可能不是100% -任何理解四舍五入的人都应该能够理解这个解释。

下面是一个实现了最大余数方法的Ruby宝石: https://github.com/jethroo/lare_round

使用方法:

a =  Array.new(3){ BigDecimal('0.3334') }
# => [#<BigDecimal:887b6c8,'0.3334E0',9(18)>, #<BigDecimal:887b600,'0.3334E0',9(18)>, #<BigDecimal:887b4c0,'0.3334E0',9(18)>]
a = LareRound.round(a,2)
# => [#<BigDecimal:8867330,'0.34E0',9(36)>, #<BigDecimal:8867290,'0.33E0',9(36)>, #<BigDecimal:88671f0,'0.33E0',9(36)>]
a.reduce(:+).to_f
# => 1.0