我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

我想在一个数据帧前面加上两列,我不知道所有列的确切名称,因为它们是从之前的pivot语句生成的。所以,如果你也遇到同样的情况:把你知道名字的列放在前面,然后让它们跟着“所有其他列”,我提出了以下一般解决方案:

df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)

其他回答

我有一个在panda中重新排序列名的非常具体的用例。有时我在基于现有列的数据帧中创建一个新列。默认情况下,panda将在末尾插入我的新列,但我希望新列插入到它派生的现有列旁边。

def rearrange_list(input_list, input_item_to_move, input_item_insert_here):
    '''
    Helper function to re-arrange the order of items in a list.
    Useful for moving column in pandas dataframe.

    Inputs:
        input_list - list
        input_item_to_move - item in list to move
        input_item_insert_here - item in list, insert before 

    returns:
        output_list
    '''
    # make copy for output, make sure it's a list
    output_list = list(input_list)

    # index of item to move
    idx_move = output_list.index(input_item_to_move)

    # pop off the item to move
    itm_move = output_list.pop(idx_move)

    # index of item to insert here
    idx_insert = output_list.index(input_item_insert_here)

    # insert item to move into here
    output_list.insert(idx_insert, itm_move)

    return output_list


import pandas as pd

# step 1: create sample dataframe
df = pd.DataFrame({
    'motorcycle': ['motorcycle1', 'motorcycle2', 'motorcycle3'],
    'initial_odometer': [101, 500, 322],
    'final_odometer': [201, 515, 463],
    'other_col_1': ['blah', 'blah', 'blah'],
    'other_col_2': ['blah', 'blah', 'blah']
})
print('Step 1: create sample dataframe')
display(df)
print()

# step 2: add new column that is difference between final and initial
df['change_odometer'] = df['final_odometer']-df['initial_odometer']
print('Step 2: add new column')
display(df)
print()

# step 3: rearrange columns
ls_cols = df.columns
ls_cols = rearrange_list(ls_cols, 'change_odometer', 'final_odometer')
df=df[ls_cols]
print('Step 3: rearrange columns')
display(df)

您可以使用以下名称列表对数据帧列进行重新排序:

df=df.filter(list_of_col_name)

我相信,如果你知道另一列的位置,@Aman的答案是最好的。

如果您不知道mean的位置,但只有它的名称,则不能直接使用cols=cols[-1:]+cols[:-1]。以下是我接下来能想到的最好的东西:

meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column

这里有一个非常简单的答案(只有一行)。

在将“n”列添加到df中之后,可以执行以下操作。

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))
df['mean'] = df.mean(1)
df
           0           1           2           3           4        mean
0   0.929616    0.316376    0.183919    0.204560    0.567725    0.440439
1   0.595545    0.964515    0.653177    0.748907    0.653570    0.723143
2   0.747715    0.961307    0.008388    0.106444    0.298704    0.424512
3   0.656411    0.809813    0.872176    0.964648    0.723685    0.805347
4   0.642475    0.717454    0.467599    0.325585    0.439645    0.518551
5   0.729689    0.994015    0.676874    0.790823    0.170914    0.672463
6   0.026849    0.800370    0.903723    0.024676    0.491747    0.449473
7   0.526255    0.596366    0.051958    0.895090    0.728266    0.559587
8   0.818350    0.500223    0.810189    0.095969    0.218950    0.488736
9   0.258719    0.468106    0.459373    0.709510    0.178053    0.414752


### here you can add below line and it should work 
# Don't forget the two (()) 'brackets' around columns names.Otherwise, it'll give you an error.

df = df[list(('mean',0, 1, 2,3,4))]
df

        mean           0           1           2           3           4
0   0.440439    0.929616    0.316376    0.183919    0.204560    0.567725
1   0.723143    0.595545    0.964515    0.653177    0.748907    0.653570
2   0.424512    0.747715    0.961307    0.008388    0.106444    0.298704
3   0.805347    0.656411    0.809813    0.872176    0.964648    0.723685
4   0.518551    0.642475    0.717454    0.467599    0.325585    0.439645
5   0.672463    0.729689    0.994015    0.676874    0.790823    0.170914
6   0.449473    0.026849    0.800370    0.903723    0.024676    0.491747
7   0.559587    0.526255    0.596366    0.051958    0.895090    0.728266
8   0.488736    0.818350    0.500223    0.810189    0.095969    0.218950
9   0.414752    0.258719    0.468106    0.459373    0.709510    0.178053

假设您有列为A、B、C的df。

最简单的方法是:

df = df.reindex(['B','C','A'], axis=1)