Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

递归

我将投票最多的答案简化为:

BS="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def to_base(n, b): 
    return "0" if not n else to_base(n//b, b).lstrip("0") + BS[n%b]

对于RuntimeError有相同的建议:对于非常大的整数和负数,在cmp中超过最大递归深度。(你可以使用setrecursionlimit(new_limit))

迭代

为了避免递归问题:

BS="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def to_base(s, b):
    res = ""
    while s:
        res+=BS[s%b]
        s//= b
    return res[::-1] or "0"

其他回答

令人惊讶的是,人们给出的答案只能转换成小基数(比英语字母表的长度还小)。没有人试图给出一个可以转换为2到无穷任意底数的解。

这里有一个超级简单的解决方案:

def numberToBase(n, b):
    if n == 0:
        return [0]
    digits = []
    while n:
        digits.append(int(n % b))
        n //= b
    return digits[::-1]

所以如果你需要把一个超级大的数转换成577的底数,

numberToBase(67854 ** 15 - 102,577),将为您提供正确的解决方案: [4, 473, 131, 96, 431, 285, 524, 486, 28, 23, 16, 82, 292, 538, 149, 25, 41, 483, 100, 517, 131, 28, 0, 435, 197, 264, 455],

你以后可以把它转换成任何你想要的基数

at some point of time you will notice that sometimes there is no built-in library function to do things that you want, so you need to write your own. If you disagree, post you own solution with a built-in function which can convert a base 10 number to base 577. this is due to lack of understanding what a number in some base means. I encourage you to think for a little bit why base in your method works only for n <= 36. Once you are done, it will be obvious why my function returns a list and has the signature it has.

简单基底变换

def int_to_str(x, b):
    s = ""
    while x:
        s = str(x % b) + s
        x //= b
    return s

输出的例子,没有0到基数9

s = ""
x = int(input())
while x:
    if x % 9 == 0:
        s = "9" + s
        x -= x % 10
        x = x // 9
    else:
        s = str(x % 9) + s
        x = x // 9

print(s)
num = input("number")
power = 0
num = int(num)
while num > 10:
    num = num / 10
    power += 1

print(str(round(num, 2)) + "^" + str(power))

下面是一个如何将任意基数转换为另一个基数的示例。

from collections import namedtuple

Test = namedtuple("Test", ["n", "from_base", "to_base", "expected"])


def convert(n: int, from_base: int, to_base: int) -> int:
    digits = []
    while n:
        (n, r) = divmod(n, to_base)
        digits.append(r)    
    return sum(from_base ** i * v for i, v in enumerate(digits))


if __name__ == "__main__":
    tests = [
        Test(32, 16, 10, 50),
        Test(32, 20, 10, 62),
        Test(1010, 2, 10, 10),
        Test(8, 10, 8, 10),
        Test(150, 100, 1000, 150),
        Test(1500, 100, 10, 1050000),
    ]

    for test in tests:
        result = convert(*test[:-1])
        assert result == test.expected, f"{test=}, {result=}"
    print("PASSED!!!")

字符串不是表示数字的唯一选择:您可以使用一个整数列表来表示每个数字的顺序。这些可以很容易地转换为字符串。

没有一个答案拒绝底数< 2;对于非常大的数字(如56789 ** 43210),大多数将运行非常缓慢或因堆栈溢出而崩溃。为了避免这种失败,可以像这样快速减少:

def n_to_base(n, b):
    if b < 2: raise # invalid base
    if abs(n) < b: return [n]
    ret = [y for d in n_to_base(n, b*b) for y in divmod(d, b)]
    return ret[1:] if ret[0] == 0 else ret # remove leading zeros

def base_to_n(v, b):
    h = len(v) // 2
    if h == 0: return v[0]
    return base_to_n(v[:-h], b) * (b**h) + base_to_n(v[-h:], b)

assert ''.join(['0123456789'[x] for x in n_to_base(56789**43210,10)])==str(56789**43210)

在速度方面,n_to_base对于较大的数字(在我的机器上约为0.3秒)与str相当,但如果与十六进制进行比较,您可能会感到惊讶(在我的机器上约为0.3毫秒,或快1000倍)。这是因为大整数以256(字节)为基数存储在内存中。每个字节可以简单地转换为两个字符的十六进制字符串。这种对齐只发生在底数为2的幂的情况下,这就是为什么有2、8和16(以及base64, ascii, utf16, utf32)的特殊情况。

Consider the last digit of a decimal string. How does it relate to the sequence of bytes that forms its integer? Let's label the bytes s[i] with s[0] being the least significant (little endian). Then the last digit is sum([s[i]*(256**i) % 10 for i in range(n)]). Well, it happens that 256**i ends with a 6 for i > 0 (6*6=36) so that last digit is (s[0]*5 + sum(s)*6)%10. From this, you can see that the last digit depends on the sum of all the bytes. This nonlocal property is what makes converting to decimal harder.