我有一个JSON文件,我想转换为CSV文件。我如何用Python做到这一点?

我试着:

import json
import csv

f = open('data.json')
data = json.load(f)
f.close()

f = open('data.csv')
csv_file = csv.writer(f)
for item in data:
    csv_file.writerow(item)

f.close()

然而,这并没有起作用。我正在使用Django和我收到的错误是:

`file' object has no attribute 'writerow'`

然后我尝试了以下方法:

import json
import csv

f = open('data.json')
data = json.load(f)
f.close()

f = open('data.csv')
csv_file = csv.writer(f)
for item in data:
    f.writerow(item)  # ← changed

f.close()

然后得到错误:

`sequence expected`

样本json文件:

[{
        "pk": 22,
        "model": "auth.permission",
        "fields": {
            "codename": "add_logentry",
            "name": "Can add log entry",
            "content_type": 8
        }
    }, {
        "pk": 23,
        "model": "auth.permission",
        "fields": {
            "codename": "change_logentry",
            "name": "Can change log entry",
            "content_type": 8
        }
    }, {
        "pk": 24,
        "model": "auth.permission",
        "fields": {
            "codename": "delete_logentry",
            "name": "Can delete log entry",
            "content_type": 8
        }
    }, {
        "pk": 4,
        "model": "auth.permission",
        "fields": {
            "codename": "add_group",
            "name": "Can add group",
            "content_type": 2
        }
    }, {
        "pk": 10,
        "model": "auth.permission",
        "fields": {
            "codename": "add_message",
            "name": "Can add message",
            "content_type": 4
        }
    }
]

当前回答

我知道这个问题已经被问到很长时间了,但我想我可以在其他人的答案上加上一篇博客文章,以一种非常简洁的方式解释解决方案。

这是链接

打开文件进行写入

employ_data = open('/tmp/EmployData.csv', 'w')

创建csv writer对象

csvwriter = csv.writer(employ_data)
count = 0
for emp in emp_data:
      if count == 0:
             header = emp.keys()
             csvwriter.writerow(header)
             count += 1
      csvwriter.writerow(emp.values())

为了保存内容,请确保关闭文件

employ_data.close()

其他回答

我知道这个问题已经被问到很长时间了,但我想我可以在其他人的答案上加上一篇博客文章,以一种非常简洁的方式解释解决方案。

这是链接

打开文件进行写入

employ_data = open('/tmp/EmployData.csv', 'w')

创建csv writer对象

csvwriter = csv.writer(employ_data)
count = 0
for emp in emp_data:
      if count == 0:
             header = emp.keys()
             csvwriter.writerow(header)
             count += 1
      csvwriter.writerow(emp.values())

为了保存内容,请确保关闭文件

employ_data.close()

使用pandas中的json_normalize:

在名为test.json的文件中使用来自OP的示例数据。 这里使用了Encoding ='utf-8',但在其他情况下可能不需要。 下面的代码利用了pathlib库。 .open是pathlib的一个方法。 也适用于非windows路径。 使用pandas.to_csv(…)将数据保存为csv文件。

import pandas as pd
# As of Pandas 1.01, json_normalize as pandas.io.json.json_normalize is deprecated and is now exposed in the top-level namespace.
# from pandas.io.json import json_normalize
from pathlib import Path
import json

# set path to file
p = Path(r'c:\some_path_to_file\test.json')

# read json
with p.open('r', encoding='utf-8') as f:
    data = json.loads(f.read())

# create dataframe
df = pd.json_normalize(data)

# dataframe view
 pk            model  fields.codename           fields.name  fields.content_type
 22  auth.permission     add_logentry     Can add log entry                    8
 23  auth.permission  change_logentry  Can change log entry                    8
 24  auth.permission  delete_logentry  Can delete log entry                    8
  4  auth.permission        add_group         Can add group                    2
 10  auth.permission      add_message       Can add message                    4

# save to csv
df.to_csv('test.csv', index=False, encoding='utf-8')

CSV输出:

pk,model,fields.codename,fields.name,fields.content_type
22,auth.permission,add_logentry,Can add log entry,8
23,auth.permission,change_logentry,Can change log entry,8
24,auth.permission,delete_logentry,Can delete log entry,8
4,auth.permission,add_group,Can add group,2
10,auth.permission,add_message,Can add message,4

嵌套更重的JSON对象的资源:

所以答案: 用python平化JSON数组 如何平嵌套的JSON递归,与平坦JSON 如何json_normalize一个列与nan 使用pandas将一列字典拆分为单独的列 有关其他相关问题,请参阅json_normalize标记。

这是@MikeRepass回答的修改。此版本将CSV写入文件,适用于Python 2和Python 3。

import csv,json
input_file="data.json"
output_file="data.csv"
with open(input_file) as f:
    content=json.load(f)
try:
    context=open(output_file,'w',newline='') # Python 3
except TypeError:
    context=open(output_file,'wb') # Python 2
with context as file:
    writer=csv.writer(file)
    writer.writerow(content[0].keys()) # header row
    for row in content:
        writer.writerow(row.values())

令人惊讶的是,我发现到目前为止贴在这里的答案都没有正确处理所有可能的场景(例如,嵌套字典,嵌套列表,无值等)。

这个解决方案应该适用于所有场景:

def flatten_json(json):
    def process_value(keys, value, flattened):
        if isinstance(value, dict):
            for key in value.keys():
                process_value(keys + [key], value[key], flattened)
        elif isinstance(value, list):
            for idx, v in enumerate(value):
                process_value(keys + [str(idx)], v, flattened)
        else:
            flattened['__'.join(keys)] = value

    flattened = {}
    for key in json.keys():
        process_value([key], json[key], flattened)
    return flattened

此代码适用于任何给定的json文件

# -*- coding: utf-8 -*-
"""
Created on Mon Jun 17 20:35:35 2019
author: Ram
"""

import json
import csv

with open("file1.json") as file:
    data = json.load(file)



# create the csv writer object
pt_data1 = open('pt_data1.csv', 'w')
csvwriter = csv.writer(pt_data1)

count = 0

for pt in data:

      if count == 0:

             header = pt.keys()

             csvwriter.writerow(header)

             count += 1

      csvwriter.writerow(pt.values())

pt_data1.close()